Determining maximum memory size, maximum unique operations, and maximum value of an unsigned constant for 12 bit instruction microprocessor - cpu-architecture

I'm new to computer architecture and am having some trouble with this question:
A hypothetical microprocessor having 12-bit instructions is composed of three fields: the first 4 bits are reserved for the opcode, the next two bits are reserved for a register number and the remaining bits contain the operand memory. What is the maximum memory size, maximum number of different operations the system would be able to understand and the maximum value of an unsigned integer?

There’s not enough information to answer that question. You provided specs about the instructions but not about address size or data word size. The only thing we can say for sure is that 4 bits are enough to specify 16 different instructions.

Related

Why is this question worded like this regarding main memory?

I have this question:
1. How many bits are required to address a 4M × 16 main memory if main memory is word-addressable?
And before you say it, yes I have looked this question up and there have been posts on stackoverflow asking about how to answer it but my question is different.
This may sound like a silly question but I don't understand what it means when it says "How many bits are required to address...".
To my understanding and what I have been taught is that (if we're talking about word addressable) each cell would contain 16 bits in the RAM chip and the length would be 4M-1, with 2^22 words. But I don't understand what it is asking when it says 'How many bits are required...':
The answer says 22 bits would be required but I just don't understand. 22 bits for what? All I know is each word is 16 bits and each cell would be numbered from 0 - 4M-1. Can someone clear this up for me please?
Since you have 4 million cells, you need a number that is able to represent each cell. 22 bits is the size of the address to allow representing 2^22 cels (4,194,304 cells)
In computing, a word is the natural unit of data used by a particular processor design. A word is a fixed-sized piece of data handled as a unit by the instruction set or the hardware of the processor.
(https://en.m.wikipedia.org/wiki/Word)
Using this principle imagine a memory with a word that uses 2 bits only, and it is capable of storing 4 words:
XX|YY|WW|ZZ
Each word in this memory is represented by a number that tells to computer it's position.
XX is 0
YY is 1
WW is 2
ZZ is 3
The smallest binary number length that can represent 3 is a 2 bit binary length right? Now apply the same example to a largest memory. Doesn't matters if the word size is 16 bits or 2 bits. Only the length of words matters

Hardware Support for Paging

"The address consists of 16 bits, and the page size is 8KB. The page table thus consists of eight entries that are kept in fast registers."
How do we get the total entries in the page table as 8?
According to the calculation it should be 1.
Total Entries in the Page Table= ((2^16)/(2^3*2^10*2^3))=1.
(The first 2^3 is for 8 in 8KB, the second one is for bytes to bits conversion and 2^10 is for "Kilo" in 8KB.)
Thanks
Memory is byte-addressable hence, you do not need to divide by 2^3 for bytes to bit conversion.
Explaining it further, 16-bits for address means that the processor will generate memory addresses of length 16 bits which will be used to address the byte or half-word or word present starting (or ending - depends on the endianess of the machine) at that 16-bit value.
Now, the page size is the total size of a page in bits which in this case is 2^16 bits. But as memory is byte addressable, hence number of processor addresses in one page will be 2^16/2^3 i.e 2^13 addresses.
Hence number of page table entries are 2^16/2^13 = 8.

What does it mean by word size in computer?

I have tried to get a grasp of what "word" means and I have looked in the wiki and the definition is vague. So my question is what is "word size"? Is it the length of the data bus, address bus?
"Word size" refers to the number of bits processed by a computer's CPU in one go (these days, typically 32 bits or 64 bits). Data bus size, instruction size, address size are usually multiples of the word size.
Just to confuse matters, for backwards compatibility, Microsoft Windows API defines a WORD as being 16 bits, a DWORD as 32 bits and a QWORD as 64 bits, regardless of the processor.
One answer is -- not as much as it used to. Way back when, computers could only load/store full "words" of memory, which would be 16/24/32/36/48 bits each (depending on the particular machine). One would have to carefully structure their program design around the word size of the target machine.
But any more computers can access individual bytes or can access strings of data dozens of bytes long, with one relatively seamless operation. Much more significant than the technical word size is the memory buss width, which determines how many bytes can be transferred between CPU and memory in one memory "cycle".
So "word size" is somewhat meaningless, and (as another answer suggests) companies like Microsoft will often define it in an arbitrary manner, with no real relationship to anything.
Consider the following:
CPU (processor), RAM (main memory), I/O devices (mouse, keyboard, printer), Bus (data transfer component).
How would you like these computer parts to communicate and transfer data?
you definitely need a fixed size of bits to be considered a single unit of data.
For that, Computer scientists agreed to standardize this unit to be 32 bits or 64 bits (depending on the manufacturer choice).
They gave this unit a name and called it a Word.
So a Word is nothing but a unit of data (bunch of bits (signal charges of zeros and ones)) that moves around from a computer component to another.
For instance buses are built with 32 bits (4 bytes) and some with 64 bits (8 bytes). Likewise with the CPU (hardware) and operating systems (software) are built with either 32 bits or 64 bits.
It just happened to be the standard unit named Word and sized 32 bits or 64 bits.
Ps: Word is one of the many data size units that move around inside the computer, different computer components use different sizes to transport data (signals charges that represent zeros and ones), for instance RAM can use size of 64 bits while Buses can use 32 bits. Hardware designers design the architecture of components taking into account these size differences to either implement Word size of 32 bits on only CPU but 64 bits on RAM, or implement the same size on all components, ...etc. Word size used to be 8 bits (1 byte), but nowadays the most comment unit size is 64 bits on most computer components such as CPU or RAM, or Bus, ...etc.
Word size means the no. of bits of data processed by the microprocessor as a unit.
Word is set of bits acts as a single unit of data processed by microprocessor. However, it can be any set value, common values included: 16, 18, 24, 32, 36, 40, 48, and 64.
Analogy:
In English language, word is a single distinct meaningful element of speech or writing, used with others to form a sentence.

word size and data bus

I am confused about the definition of word size. I read that the word size of a processor is its data bus width. Like an 8 bit processor has an 8 bit wide data bus. I recently read that the maximum size of the virtual address space is determined by word size i.e. if the word size is n bits the max virtual address space is 2^n -1. But I always thought that maximum virtual address space is determined by address bus width i.e. an n bits wide address bus can address maximum 2^n bytes. So, what is true?
Also, is this related to pointers as an n bit data bus is capable of carrying only an n bit address. So, maximum 2^n bytes can be accessed via pointers.
I'll first say that some of your confusion probably comes from the fact that things were simpler a few decades ago and your understanding of terms is based on these simpler machines.
I am confused about the definition of word size.I read that the word size of a processor is its data bus width. Like an 8 bit processor has an 8 bit wide data bus.
Definitely not. Data bus with is completely unrelated to this. The word size (which has never really been a precise term) of a processor is best loosely defined as the largest natural size for arithmetic which is generally the size of the registers in the machine. This is quite frequently the width of the data path (which is distinctly different from the data bus). The data path is simply the width of the ALUs. The word size is often the same as the pointer size.
I recently read that the maximum size of the virtual address space is determined by word size i.e. if the word size is n bits the max virtual address space is 2^n -1. But i always thought that maximum virtual address space is determined by address bus width i.e. an n bits wide address bus can address maximum 2^n bytes. So, what is true?
No. The size of the virtual address space is simply determined by the number of bits in the virtual page number of the page table (and the TLB). On current amd64 based machines, only 48 bits of the virtual address are useable. The upper 16 are a sign extension of bit 47. On current amd64 machines, the physical address size is 52 bits. These physical address bits are the ones that are sent on the bus. Though even the term bus is really incorrect. Almost all links are point-to-point (DDRx DRAM is an exception) and use a packetized format (header + payload) instead of address wires and data wires.
Also, is this related to pointers as an n bit data bus is capable of carrying only an n bit address. So, maximum 2^n bytes can be accessed via pointers.
Many (almost all even) machines that have a separate address bus, use an address bus that is narrower than the the number of address bits. These bits are simply split up and sent across the bus using multiple clock cycles. DDRx DRAM is another example of this.
the maximum size of the virtual address space is determined by word size
This used to be true, but certain extensions were made to bypass this limitation (namely Physical Address Extension, or PAE) which enables such things as 36 bit memory addresses.
Aside from that, wikipedia defines a word as:
the natural unit of data used by a particular processor design
In almost all cases, this is 32 bits on 32 bit systems and 64 bits on 64 bit systems. You will still frequently find references to 32 bit words on 64 bit systems (partially because amd64 is an extension of intel x86 rather than a revision). Also, as a holdover from the earlier days of modern computing, you will frequently see 32 bit quantities referred to as a DWORD or double word, and 64 bit ones as a QWORD or quad word.
This is something people fight about all the time. I personally use the definition of word size == bus width.

What is the exact meaning of 'N' bit processor ? , clarification for freescale arch

While reading one Freescale processor manual I stuck somewhere, which specifies that it is a 32-bit processor.
May I know the exact meaning and logic behind that?
Update:
Does it specify its ALU width or its address width or its register width specifically or all of them together is N-bit each.
Update:
Hope you have heard of Freescale processors. I just came across their site which describes one of their latest Starcore-based processor known as SC3850 as a 16-bit processor. As far as I know, it has 32 bit program counters, including ALU, and 40-bit register width and 2x64 bit address bus width. Also the SC3850 can handle SIMD(2) instructions which are of 32 bit or 64 bit.
For more details please go through this link
One of the major reasons you would care about the register width of the processor is performance. Generally doubling the number of bits doubles the rate at which a processor can move data around, and compute. This is why we're not all using 8 bit processors.
The other major reason is address space. A 16 bit program counter limits you to 64k of address space, and a 32 bit counter limits you to 4 gigabytes. The new 64 bit processors make it possible, if all the address lines are present, to support 17,179,869,184 gigabytes of memory.
Firstly i dont have a definitive answer but i would guess that 8 being a power of 2, is an important factor. Being a power of 2 also means that certain optimisations may be performed by dividing the 8 bits into groups which also means lookup tables can be used for certain operations. 8 bits in the past was also the perfect size when dealing wiht plain old ascii characters. I can imagine that using 5 bit bytes and encoding a string of ascii characters across memory would be a pain.
Please check out the Wikipedia entry on 32-bit processors, from the entry:
In computer architecture, 32-bit
integers, memory addresses, or other
data units are those that are at most
32 bits (4 octets) wide. Also, 32-bit
CPU and ALU architectures are those
that are based on registers, address
buses, or data buses of that size.
32-bit is also a term given to a
generation of computers in which
32-bit processors were the norm.
Read and understand the article - then the answer for N will be obvious.