Hardware Support for Paging - operating-system

"The address consists of 16 bits, and the page size is 8KB. The page table thus consists of eight entries that are kept in fast registers."
How do we get the total entries in the page table as 8?
According to the calculation it should be 1.
Total Entries in the Page Table= ((2^16)/(2^3*2^10*2^3))=1.
(The first 2^3 is for 8 in 8KB, the second one is for bytes to bits conversion and 2^10 is for "Kilo" in 8KB.)
Thanks

Memory is byte-addressable hence, you do not need to divide by 2^3 for bytes to bit conversion.
Explaining it further, 16-bits for address means that the processor will generate memory addresses of length 16 bits which will be used to address the byte or half-word or word present starting (or ending - depends on the endianess of the machine) at that 16-bit value.
Now, the page size is the total size of a page in bits which in this case is 2^16 bits. But as memory is byte addressable, hence number of processor addresses in one page will be 2^16/2^3 i.e 2^13 addresses.
Hence number of page table entries are 2^16/2^13 = 8.

Related

Addressing a word inside memory frames

Suppose we have a 64 bit processor with 8GB ram with frame size 1KB.
Now main memory size is 2^33 B
So number of frames is 2^33 / 2^10 which is 2^23 frames.
So we need 23 bits to uniquely identify every frame.
So the address split would be 23 | 10 where 10 bits are required to identify each byte in a frame (total 1024 bytes)
As it is word addressable with each word = 8B, will the address split now be 23 | 7 as we have 2^7 words in each frame?
Also can the data bus size be different than word size ?
If suppose data bus size is 128 bits then does it mean that we can address two words and transfer 2 words at a time in a single bus cycle but can only perform 64 bit operations?
Most of the answers are dependent on how the system is designed. Also there is bit more picture to your question.
There is something called available addressable space on a system. In a 32 bit application this would be 2^32 and in a 64 bit application this would be 2^64. This is called virtual memory. And there is physical memory which commonly refereed as RAM. If the application is built as 64 bits, then it is able work as if there is 2^64 memory is available. The underlying hardware may not have 2^64 RAM available, which taken care by the memory management unit. Basically it breaks both virtual memory and physical memory into pages( you have refereed to this as frames) and keeps the most frequently used pages in RAM. Rest are stored in the hard disk.
Now you state, the RAM is 8GB which supports 2^33 addressable locations. When you say the processor is 64 bits, I presume you are talking about a 64 bit system which supports 2^64 addressable locations. Now remember the applications is free to access any of these 2^64 locations. Number of pages available are 2^64/2^10 = 2^54. Now we need to know which virtual page is mapped to which physical page. There is a table called page table which has this information. So we take the first 54 bits of the address and index in to this table which will return the physical page number which will be 2^33/2^10 = 23 bits. We combine this 23 bits to the least 10 bits of the virtual address which gives us the physical address. In a general CPU, once the address is calculated, we don't just go an fetch it. First we check if its available in the cache, all the way down the hierarchy. If its not available a fetch request will be issued. When a cache issues a fetch request to main memory, it fetches an entire cache line (which is usually a few words)
I'm not sure what you mean by the following question.
As it is word addressable with each word = 8B, will the address split now be 23 | 7 as we have 2^7 words in each frame?
Memories are typically designed to be byte addressable. Therefore you'll need all the 33 bits to locate a byte within the page.
Also can the data bus size be different than word size ?
Yes you can design a data bus to have any width, but having it less than a byte would be painful.
If suppose data bus size is 128 bits then does it mean that we can
address two words and transfer 2 words at a time in a single bus cycle
but can only perform 64 bit operations?
Again the question is bit unclear, if the data but is 128 bits wide, and your cache line is wider than 128 bits, it'll take multiple cycles to return data as a response to a cache miss. You wont be doing operations on partial data in the cache (at least to the best of my knowledge), so you'll wait until the entire cache line is returned. And once its there, there is no restriction of what operations you can do on that line.

What is the total amount of virtual memory covered by one entry of page tables at each level?

The following parameters apply to a system employing a 40-bit virtual address and
1G bytes of physical (main) memory. Word size is 64 bits (8 bytes). Addresses point
to bytes and are aligned on byte boundaries. We use the following notation for an i-bit
address: Ai-1...A2,A1,A0 where Ai-1 is the most significant bit of the address and A0
is the least significant bit of the address. The virtual address is denoted by V39-V0
and the physical address is denoted by P29-P0.
Page size: 64 K bytes
Page table: three-level page table
The virtual page number is split in 3 fields of 8 bits each.
Entries in all tables are 32 bits (4 bytes).
This is what I have found so far,
Since it is a 40 bit virtual address and the Page Size is 64kB (2^16), 16 bits are for offset and we subtract 16 from 40. The remaining 24 bits are for the Virtual Page Number (VPN). The VPN is split in 3 fields of 8 bits each. So we have a three level page table. Each table has 2^8 entries and the size of each table is 2^8 * 4 bytes = 1024 bytes.
From here how would we proceed and find the total amount of virtual memory covered by one entry of page tables at each level?
At the lowest level each entry points to a single page, so working out the amount of virtual memory is trivial, its the size of 1 page. At each of the higher level, one entry represents n entries in the lower table (2^8 in this case). So for the second level its n * amount covered by a bottom level entry, or 2^8* the size of a page. Then use the size of a second level to repeat this calculation for the third level.

Page table entry size - why a power of 2?

I solved some question, where the page table entry size needed only 26 bits - 22 for the physical address, and 4 for dirty bits and such. However it was rounded up to 32 - because 26 is not a power of 2. Must be something simple I'm missing but why do we have to do that? Thanks!
I think here that you need to realize that the page table entry needs to accessed like any other piece of data. Typically, this means that it needs to fit into a byte or a word.
Now bytes only hold 8 bits, so that is not enough room. For many machines (and I suspect, your machine too), words are 32 bits.
Thus the page table entry is allocated 32 bits of space.
Number of entries in a page table entry and the size are two things. Obviously the size is equal to the number of entries times size of a single entry. Page table entry is there to tell you which virtual page maps to which physical page. Which means, the number of entries you need in a page table entry is, number of virtual page you have. which can be calculated by dividing the total addressable space by the size of a page. (For example, 32 bit address and a 4k page size gives us 2 to the power 20 entries), virtual part of an entry will be 20 bits. Size of a physical part entry is determined by the available physical memory. Usually the page size remain same. By this way you can calculate the bits needed for a single entry. Then you can multiply this by the number of entries and you have the total size.

What is page table entry size?

I found this example.
Consider a system with a 32-bit logical address space. If the page
size in such a system is 4 KB (2^12), then a page table may consist of
up to 1 million entries (2^32/2^12). Assuming that
each entry consists of 4 bytes, each process may need up to 4 MB of physical address space for the page table alone.
What is the meaning of each entry consists of 4 bytes and why each process may need up to 4 MB of physical address space for the page table?
A page table is a table of conversions from virtual to physical addresses that the OS uses to artificially increase the total amount of main memory available in a system.
Physical memory is the actual bits located at addresses in memory (DRAM), while virtual memory is where the OS "lies" to processes by telling them where it's at, in order to do things like allow for 2^64 bits of address space, despite the fact that 2^32 bits is the most RAM normally used. (2^32 bits is 4 gigabytes, so 2^64 is 16 gb.)
Most default page table sizes are 4096 kb for each process, but the number of page table entries can increase if the process needs more process space. Page table sizes can also initially be allocated smaller or larger amounts or memory, it's just that 4 kb is usually the best size for most processes.
Note that a page table is a table of page entries. Both can have different sizes, but page table sizes are most commonly 4096 kb or 4 mb and page table size is increased by adding more entries.
As for why a PTE(page table entry) is 4 bytes:
Several answers say it's because the address space is 32 bits and the PTE needs 32 bits to hold the address.
But a PTE doesn't contain the complete address of a byte, only the physical page number. The rest of the bits contain flags or are left unused. It need not be 4 bytes exactly.
1) Because 4 bytes (32 bits) is exactly the right amount of space to hold any address in a 32-bit address space.
2) Because 1 million entries of 4 bytes each makes 4MB.
Your first doubt is in the line, "Each entry in the Page Table Entry, also called PTE, consists of 4 bytes". To understand this, first let's discuss what does page table contain?", Answer will be PTEs. So,this 4 bytes is the size of each PTE which consist of virtual address, offset,( And maybe 1-2 other fields if are required/desired)
So, now you know what page table contains, you can easily calculate the memory space it will take, that is: Total no. of PTEs times the size of a PTE.
Which will be: 1m * 4 bytes= 4MB
Hope this clears your doubt. :)
The page table entry is the number number of bits required to get any frame number . for example if you have a physical memory with 2^32 frames , then you would need 32 bits to represent it. These 32 bits are stored in the page table in 4 bytes(32/8) .
Now, since the number of pages are 1 million i.e. so the total size of the page table =
page table entry*number of pages
=4b*1million
=4mb.
hence, 4mb would be required to store store the table in the main memory(physical memory).
So, the entry refers to page table entry (PTE). The data stored in each entry is the physical memory address (PFN). The underlying assumption here is the physical memory also uses a 32-bit address space. Therefore, PTE will be at least 4 bytes (4 * 8 = 32 bits).
In a 32-bit system with memory page size of 4KB (2^2 * 2^10 B), the maximum number of pages a process could have will be 2^(32-12) = 1M. Each process thinks it has access to all physical memory. In order to translate all 1M virtual memory addresses to physical memory addresses, a process may need to store 1 M PTEs, that is 4MB.
Honestly a bit new to this myself, but to keep things short it looks like 4MB comes from the fact that there are 1 million entries (each PTE stores a physical page number, assuming it exists); therefore, 1 million PTE's, which is 2^20 = 1MB. 1MB * 4 Bytes = 4MB, so each process will require that for their page tables.
size of a page table entry depends upon the number of frames in the physical memory, since this text is from "OPERATING SYSTEM CONCEPTS by GALVIN" it is assumed here that number of pages and frames are same, so assuming the same, we find the number of pages/frames which comes out to be 2^20, since page table only stores the frame number of the respective page, so each page table entry has to be of atleast 20 bits to map 2^20 frame numbers with pages, here 4 byte is taken i.e 32 bits, because they are using the upper limit, since page table not only stores the frame numbers, but it also stores additional bits for protection and security, for eg. valid and invalid bit is also stored in the page table, so to map pages with frames we need only 20 bits, the rest are extra bits to store protection and security information.

Multi-level page tables - hierarchical paging

Example question from a past operating system final, how do I calculate this kind of question?
A computer has a 64-bit virtual address space and 2048-byte pages. A page table entry takes 4 bytes. A multi-level page table is used because each table must be contained within a page. How many levels are required?
How would I calculate this?
Since page table must fit in a page, page table size is 2048 bytes and each entry is 4 bytes thus a table holds 2048/4=512 entries. To address 512 entries it requires log2(512)=9 bits. The total number of bits available to encode the entry for each page level is 64-log2(2048)=53 bits (the number of bits of address space minus the page offset bits). Thus the total number of levels required is 53/9=6 (rounded up).
The x86-64 default page table size is 4096 bytes, each page table must fit in a page and a page table entry is 8 bytes. Current CPUs only implement 48 bits of virtual address space. How many page table levels are required?
Logical Address bit=64,
Number of page will be= 2^64/2048 = 2^64/2^11 = 2^53
Pages we have entry sine of page table= 4 Byte ,
Number of Entry in 1 Page will be= 2048/4=>512,
bit To represent one Entry=Log(512)=9bit,
and bit for Page is= 53bit
Therefore Number of Level =53/9=>6 Level Page Table