Design questions considering Kafka Streams and Spring Cloud Stream - apache-kafka

I need to maintain external systems records (KTables) and track any change on those records (KStreams).
The KTables will be requested by KSQL queries, while the KStreams will be handled by an event monitor.
Questions:
I need the KTable working like mirrors from the external systems. Will I have any problem if I decide to use this design regarding data storage? Data loss, expiration?
Using Spring, what is the best approach for the data type? Avro with a schema registry?
The source of everything is a Topic, right? So I will need to send messages to Topics, and my KTable and KStream would translate as needed. Is that right?
The KTable definitions are known, but I may have a group KStreams being created dynamic; what is the best way to achieve this?
I appreciate any comment that could help better design it.

here are my suggestions/opinions on the questions, you might want to do further research into some of the core Kafka Streams related questions.
Not entirely clear what use-case/design you are proposing. The way I understood it, you have an external system (such as a database) and you want to extract that data as a key/value pair which could be translated into a KTable. In Kafka Streams, as you indicated in your question #3, the source of truth is the Kafka topic. Therefore, you need to bring the data from the external system into a Kafka topic first, and then materialize that as a KTable in Kafka Streams. There are established patterns such as the Change Data Capture (CDC) for exporting data from external systems to a Kafka topic in almost real-time. KTable can be materialized into state storage which is by default backed up RocksDB. The same information is also replicated by Kafka changelog topics and therefore applies the guarantees provided by data in a Kafka topic. I hope that someone from the Kafka Streams team can chime in on this specific topic for more information needed.
Spring Cloud Stream provides a binder for Kafka Streams using which you can establish bindings to Kafka topics through various Kafka Streams types such as KStream, KTable and GlobalKTable. See the reference docs for more details. The binder provides several convenient options for data types with Serde inference in the case of common data types. The question about Avro data types is really dependent on your use cases and how you want to manage the schema structure for the data. If centralized schema management is a concern, then avro is a good choice. You can use Confluent's schema registry for Avro with Spring Cloud Stream. Spring provides a schema registry, but for Kafka Streams workloads that require avro, we recommend using the Confluent schema registry as it has more features. Either way, it should work and we provide a number of sample applications demonstrating schema evolution here.
As I mentioned in the answer for #1, yes, the source of truth is Kafka topics and the Spring Cloud Stream binder provides binding mechanisms for connecting to Kafka topics and translate the data as KStream or KTable.
Here again, I am not following the actual use-case. However, Kafka Streams provides many different API methods which allow you to transform the incoming data so that other KStream types can be created dynamically. For instance, you apply a map or flatMap operation on the incoming KStream and thus create a new KStream from it. Not sure, if that is what you meant. If that is the case, then it really becomes a business logic concern. This is certainly possible.
Hope this helps, once again, these are my thoughts around these, and for some of these questions, there is no right or wrong answer. You need to consider the use case and design options carefully and choose the right path that fits your needs.

Related

Filtering in Kafka and other streaming technologies

I am currently doing some research about which stream processing technology to use. So far I have looked at message queueing technologies and streaming frameworks. I am now leaning towards Apache Kafka or Google Pub/Sub.
The requirements I have:
Deliver, read and process messages/events in real time.
Persistence in the messages/events.
Ability to filter messages/event in real time with out having to read entire topic. For example: if I have topic called ‘details’, I want to be able to filter out the messages/events out of that topic where an attribute of an event equals a certain value.
Ability to see if the producer to a certain topic or queue is finished.
Ability to delete messages/events in a topic based on an attribute within an event equaling a certain value.
Ordering in messages/events.
My question is: what is the best framework/technology for these use cases? From what I have read so far, Kafka doesn’t provide that out of the boxes filtering approach for messages/events in topics and Google Pub/Sub does have a filter approach.
Any suggestions and experience would be welcome.
As per the requirements you mentioned kafka seems a nice fit, using kafka streams or KSQL you can perform filtering in real-time, here is an example https://kafka-tutorials.confluent.io/filter-a-stream-of-events/confluent.html
What you need is more than just integration and data transfer, you need something similar to what is known as ETL tool, here you can find more about ETL and tools in GCP https://cloud.google.com/learn/what-is-etl

Why Kafka Connect Works?

I'm trying to wrap my head around how Kafka Connect works and I can't understand one particular thing.
From what I have read and watched, I understand that Kafka Connect allows you to send data into Kafka using Source Connectors and read data from Kafka using Sink Connectors. And the great thing about this is that Kafka Connect somehow abstracts away all the platform-specific things and all you have to care about is having proper connectors. E.g. you can use a PostgreSQL Source Connector to write to Kafka and then use Elasticsearch and Neo4J Sink Connectors in parallel to read the data from Kafka.
My question is: how does this abstraction work? Why are Source and Sink connectors written by different people able to work together? In order to read data from Kafka and write them anywhere, you have to expect some fixed message structure/schema, right? E.g. how does an Elasticsearch Sink know in advance what kind of messages would a PostgreSQL Source produce? What if I replaced PostgreSQL Source with MySQL source? Would the produced messages have the same structure?
It would be logical to assume that Kafka requires some kind of a fixed message structure, but according to the documentation the SourceRecord which is sent to Kafka does not necessarily have a fixed structure:
...can have arbitrary structure and should be represented using
org.apache.kafka.connect.data objects (or primitive values). For
example, a database connector might specify the sourcePartition as
a record containing { "db": "database_name", "table": "table_name"}
and the sourceOffset as a Long containing the timestamp of the row".
In order to read data from Kafka and write them anywhere, you have to expect some fixed message structure/schema, right?
Exactly. Refer the Javadoc on the Struct and Schema classes of the Connect API as well as the Converter interface
Of course, those are not strict requirements, but without them, then the framework doesn't work across different sources and sinks, but this is no different than the contract between producers and consumers regarding serialization

Can compacted Kafka topic be used as key-value database?

In many articles, I've read that compacted Kafka topics can be used as a database. However, when looking at the Kafka API, I cannot find methods that allow me to query a topic for a value based on a key.
So, can a compacted Kafka topic be used as a (high performance, read-only) key-value database?
In my architecture I want to feed a component with a compacted topic. And I'm wondering whether that component needs to have a replica of that topic in its local database, or whether it can use that compacted topic as a key value database instead.
Compacted kafka topics themselves and basic Consumer/Producer kafka APIs are not suitable for a key-value database. They are, however, widely used as a backstore to persist KV Database/Cache data, i.e: in a write-through approach for instance. If you need to re-warmup your Cache for some reason, just replay the entire topic to repopulate.
In the Kafka world you have the Kafka Streams API which allows you to expose the state of your application, i.e: for your KV use case it could be the latest state of an order, by the means of queryable state stores. A state store is an abstraction of a KV Database and are actually implemented using a fast KV database called RocksDB which, in case of disaster, are fully recoverable because it's full data is persisted in a kafka topic, so it's quite resilient as to be a source of the data for your use case.
Imagine that this is your Kafka Streams Application architecture:
To be able to query these Kafka Streams state stores you need to bundle an HTTP Server and REST API in your Kafka Streams applications to query its local or remote state store (Kafka distributes/shards data across multiple partitions in a topic to enable parallel processing and high availability, and so does Kafka Streams). Because Kafka Streams API provides the metadata for you to know in which instance the key resides, you can surely query any instance and, if the key exists, a response can be returned regardless of the instance where the key lives.
With this approach, you can kill two birds in a shot:
Do stateful stream processing at scale with Kafka Streams
Expose its state to external clients in a KV Database query pattern style
All in a real-time, highly performant, distributed and resilient architecture.
The images were sourced from a wider article by Robert Schmid where you can find additional details and a prototype to implement queryable state stores with Kafka Streams.
Notable mention:
If you are not in the mood to implement all of this using the Kafka Streams API, take a look at ksqlDB from Confluent which provides an even higher level abstraction on top of Kafka Streams just using a cool and simple SQL dialect to achieve the same sort of use case using pull queries. If you want to prototype something really quickly, take a look at this answer by Robin Moffatt or even this blog post to get a grip on its simplicity.
While ksqlDB is not part of the Apache Kafka project, it's open-source, free and is built on top of the Kafka Streams API.

Kafka and microservices - Architecture questions

In a Microservices based architecture, who writes to Kafka? services themselves or the Microservices databases? I've been thinking about this and see pros and cons to both approaches but leaning towards having database write to Kafka topics because
Database and data in the Kafka topic won't go out of sync in case write to Kafka fails for whatever reason
Application teams won't have to have one more step to worry about
Applications can keep focusing on the core function rather than worrying about Kafka.
Thanks for your inputs
As cricket_007 has been saying, databases typically cannot write to Apache Kafka themselves; instead, you'd need a change data capturing services such as Debezium in order to stream data changes from the database into Kafka (disclaimer: I'm the lead of Debezium).
Such an approach allows to ensure (eventual) consistency between a service's own database and Kafka messages sent to other services. On specific CDC application I'd recommend to look into is the outbox pattern. The idea there is to not capture changes to the service's actual business tables, but instead work with a separate "outbox table", into which the service writes specific messages meant for consumption by other services. CDC would then be used to sent these events from that table to Kafka.
This approach avoids exposing internal data structures to outside consumers while also avoiding the issues of "dual writes" which a service would suffer from when directly writing to its database and Kafka. In Debezium there's some means of built-in support for the outbox pattern via a message transformation that helps to route the events from the outbox table into event-type specific Kafka topics.
Not all services need a database, they just emit data (logs, metrics, sensors, etc)
So, the answer would be either.
Plus, I'm not sure what database directly can export to Kafka, so you'd have some other service like Debezium deployed which would be polling those CDC records off the database
Application developers still have to "worry" about how to deserialize their data, how many partitions are in the topic so they can scale out consumption, manage offsets, among other things

Producer-consumer processing pattern for Kafka processing

I'm implementing a streaming pipeline that resembles the illustration below:
*K-topic1* ---> processor1 ---> *K-topic2* ---> processor2 -->
*K-topic3* ---> processor3 --> *K-topic4*
The K-topic components represent Kafka topics and the processor components code (Python/Java).
For the processor component, the intention is to read/consume data from the topic, perform some processing/ETL on it, and persist the results to the next topic in the chain as well as persistent store such as S3.
I have a question regarding the design approach.
The way I see it, each processor component should encapsulate both consumer and producer functionality.
Would the best approach be to have a Processor module/class that could contain KafkaConsumer and KafkaProducer classes ? To date, most examples I've seen have separate consumer and producer components which are run separately and would entail running double the number of components
as opposed to encapsulating producers & consumers within each Processor object.
Any suggestions/references are welcome.
This question is different from
Designing a component both producer and consumer in Kafka
as that question specifically mentions using Samza which is not the case here.
the intention is to read/consume data from the topic, perform some processing/ETL on it, and persist the results to the next topic in the chain
This is exactly the strength of Kafka Streams and/or KSQL. You could use the Processor API, but from what you describe, I think you'll only need the Streams DSL API
persist the results to the next topic in the chain as well as persistent store such as S3.
From the above topic, you can use a Kafka Connect Sink for getting the topic data into these other external systems. There is no need to write a consumer to do this for you.