How to generate object ids when $unwinding with aggregate in mongodb - mongodb

I'm having the following query
db.getCollection('matches').aggregate([{
"$lookup": {
"from": "player",
"localField": "players.account_id",
"foreignField": "account_id",
"as": "players2"
}
}, {
"$addFields": {
"players": {
"$map": {
"input": "$players",
"in": {
"$mergeObjects": [
"$$this", {
"$arrayElemAt": [
"$players2", {
"$indexOfArray": [
"$players.account_id",
"$$this.account_id"
]
}
]
}
]
}
}
}
}
}, {
"$set": {
"players.match_id": "$match_id",
"players.radiant_win": "$radiant_win"
}
}, {
"$unwind": "$players"
}, {
"$replaceRoot": {
"newRoot": "$players"
}
}, {
"$project": {
"_id": 1,
"match_id": 1,
"account_id": 1,
"hero_id": 1,
"radiant_win": 1
}
}
])
which is supposed to match an inner array with another collection, merge the objects in the arrays by the matching and then unwrap ($unwind) the array into a new collection.
Unfortunately, I'm getting duplicate Object ids which is sort of a problem for when I want to export this collection.
How can I ensure unique Object_Ids for the aggregation?
Thanks in advance!

Related

mongodb aggregation with multidimensional array

How can i aggregate two collections if i have the index in multidimensional array?
//collection 1 item example:
{
_id: ObjectId('000'),
trips: [ // first array
{ // trip 1
details: [ // array in first array
{ // detail 1
key: ObjectId('111') // ==> _id i want aggregate
}
]
}
]
}
//collection 2 item exampe:
{
_id: ObjectId('111'),
description: 'any info here...'
}
what is the procedure to do in order to obtain a valid result?
I don't want to reprocess every data after doing a "find".
This is the result I would like to get
//collection 1 after aggregate:
{
_id: ObjectId('000'),
trips: [
{ // trip 1
details: [
{ // detail 1
key: ObjectId('111') // id i want aggregate
_description_obj: {
_id: ObjectId('111'),
description: 'any info here...'
}
}
]
}
]
}
Here's one way you could do it.
db.coll1.aggregate([
{
"$match": {
_id: ObjectId("000000000000000000000000")
}
},
{
"$lookup": {
"from": "coll2",
"localField": "trips.details.key",
"foreignField": "_id",
"as": "coll2"
}
},
{
"$set": {
"trips": {
"$map": {
"input": "$trips",
"as": "trip",
"in": {
"$mergeObjects": [
"$$trip",
{
"details": {
"$map": {
"input": "$$trip.details",
"as": "detail",
"in": {
"$mergeObjects": [
"$$detail",
{
"_description_obj": {
"$first": {
"$filter": {
"input": "$coll2",
"cond": {"$eq": ["$$this._id", "$$detail.key"]}
}
}
}
}
]
}
}
}
}
]
}
}
},
"coll2": "$$REMOVE"
}
}
])
Try it on mongoplayground.net.

MongoDB: how to aggregate from multiple collections with same aggregation pipeline

I'm trying to get aggregations with same aggregation pipeline including $match and $group operations from multiple collections.
For example,
with a users collection and collections of questions, answers and comments where every document has authorId and created_at field,
db = [
'users': [{ _id: 123 }, { _id: 456} ],
'questions': [
{ authorId: ObjectId('123'), createdAt: ISODate('2022-09-01T00:00:00Z') },
{ authorId: ObjectId('456'), createdAt: ISODate('2022-09-05T00:00:00Z') },
],
'answers': [
{ authorId: ObjectId('123'), createdAt: ISODate('2022-09-05T08:00:00Z') },
{ authorId: ObjectId('456'), createdAt: ISODate('2022-09-01T08:00:00Z') },
],
'comments': [
{ authorId: ObjectId('123'), createdAt: ISODate('2022-09-01T16:00:00Z') },
{ authorId: ObjectId('456'), createdAt: ISODate('2022-09-05T16:00:00Z') },
],
]
I want to get counts of documents from each collections with created_at between a given range and grouped by authorId.
A desired aggregation result may look like below. The _ids here are ObjectIds of documents in users collection.
\\ match: { createdAt: { $gt: ISODate('2022-09-03T00:00:00Z) } }
[
{ _id: ObjectId('123'), questionCount: 0, answerCount: 1, commentCount: 0 },
{ _id: ObjectId('456'), questionCount: 1, answerCount: 0, commentCount: 1 }
]
Currently, I am running aggregation below for each collection, combining the results in the backend service. (I am using Spring Data MongoDB Reactive.) This seems very inefficient.
db.collection.aggregate([
{ $match: {
created_at: { $gt: ISODate('2022-09-03T00:00:00Z') }
}},
{ $group : {
_id: '$authorId',
count: {$sum: 1}
}}
])
How can I get the desired result with one aggregation?
I thought $unionWith or $lookup may help but I'm stuck here.
You can try something like this, using $lookup, here we join users, with all the three collections one-by-one, and then calculate the count:
db.users.aggregate([
{
"$lookup": {
"from": "questions",
"let": {
id: "$_id"
},
"pipeline": [
{
"$match": {
$expr: {
"$and": [
{
"$gt": [
"$createdAt",
ISODate("2022-09-03T00:00:00Z")
]
},
{
"$eq": [
"$$id",
"$authorId"
]
}
]
}
}
}
],
"as": "questions"
}
},
{
"$lookup": {
"from": "answers",
"let": {
id: "$_id"
},
"pipeline": [
{
"$match": {
$expr: {
"$and": [
{
"$gt": [
"$createdAt",
ISODate("2022-09-03T00:00:00Z")
]
},
{
"$eq": [
"$$id",
"$authorId"
]
}
]
}
}
}
],
"as": "answers"
}
},
{
"$lookup": {
"from": "comments",
"let": {
id: "$_id"
},
"pipeline": [
{
"$match": {
$expr: {
"$and": [
{
"$gt": [
"$createdAt",
ISODate("2022-09-03T00:00:00Z")
]
},
{
"$eq": [
"$$id",
"$authorId"
]
}
]
}
}
}
],
"as": "comments"
}
},
{
"$project": {
"questionCount": {
"$size": "$questions"
},
"answersCount": {
"$size": "$answers"
},
"commentsCount": {
"$size": "$comments"
}
}
}
])
Playground link. In the above query, we use pipelined form of $lookup, to perform join on some custom logic. Learn more about $lookup here.
Another way is this, perform normal lookup and then filter out the elements:
db.users.aggregate([
{
"$lookup": {
"from": "questions",
"localField": "_id",
"foreignField": "authorId",
"as": "questions"
}
},
{
"$lookup": {
"from": "answers",
"localField": "_id",
"foreignField": "authorId",
"as": "answers"
}
},
{
"$lookup": {
"from": "comments",
"localField": "_id",
"foreignField": "authorId",
"as": "comments"
}
},
{
"$project": {
questionCount: {
"$size": {
"$filter": {
"input": "$questions",
"as": "item",
"cond": {
"$gt": [
"$$item.createdAt",
ISODate("2022-09-03T00:00:00Z")
]
}
}
}
},
answerCount: {
"$size": {
"$filter": {
"input": "$answers",
"as": "item",
"cond": {
"$gt": [
"$$item.createdAt",
ISODate("2022-09-03T00:00:00Z")
]
}
}
}
},
commentsCount: {
"$size": {
"$filter": {
"input": "$comments",
"as": "item",
"cond": {
"$gt": [
"$$item.createdAt",
ISODate("2022-09-03T00:00:00Z")
]
}
}
}
}
}
}
])
Playground link.

MongoDB multiple/nested aggregations

I have these collections:
users
{
_id: "userId1",
// ...
tracks: ["trackId1", "trackId2"],
};
tracks
{
_id: "trackId1",
// ...
creatorId: "userId1",
categoryId: "categoryId1"
}
categories
{
_id: "categoryId1",
// ...
tracks: ["trackId1", "trackId15", "trackId20"],
};
by using the following code, I am able to get a track by its ID and add the creator
tracks.aggregate([
{
$match: { _id: ObjectId(trackId) },
},
{
$lookup: {
let: { userId: { $toObjectId: "$creatorId" } },
from: "users",
pipeline: [{ $match: { $expr: { $eq: ["$_id", "$$userId"] } } }],
as: "creator",
},
},
{ $limit: 1 },
])
.toArray();
Response:
"track": {
"_id": "trackId1",
// ...
"categoryId": "categoryId1",
"creatorId": "userId1",
"creator": {
"_id": "userId1",
// ...
"tracks": [
"trackId5",
"trackId10",
"trackId65"
]
}
}
but what I am struggling with is that I want the creator.tracks to aggregate also returning the tracks by their ID (e.g up to last 5), and also to get the last 5 tracks from the categoryId
expected result:
"track": {
"_id": "trackId1",
// ...
"categoryId": "categoryId1",
"creatorId": "userId1",
"creator": {
"_id": "userId1",
"tracks": [
{
"_id": "trackId5",
// the rest object without the creator
},
{
"_id": "trackId10",
// the rest object without the creator
},
{
"_id": "trackId65",
// the rest object without the creator
},
]
},
// without trackId1 which is the one that is being viewed
"relatedTracks": [
{
"_id": "trackId15",
// the rest object without the creator
},
{
"_id": "trackId20",
// the rest object without the creator
},
]
}
I would appreciate any explanation/help to understand what is the best one to do it and still keep the good performance
Query
start from a track
join with users using the trackId get all the tracks of the creator
(creator-tracks)
join with categories using the categoryId to get all the tracks of the category (related tracks)
remove from related-tracks the tracks of the creator
take the last 5 from both using $slice (creator-tracks and related-tracks)
*i added 2 extra lookups to get all info of the tracks, its empty arrays because i dont have enough data(i have only trackId1), with all the data it will work
PlayMongo
db.tracks.aggregate([
{
"$match": {
"_id": "trackId1"
}
},
{
"$lookup": {
"from": "users",
"localField": "creatorId",
"foreignField": "_id",
"as": "creator-tracks"
}
},
{
"$set": {
"creator-tracks": {
"$arrayElemAt": [
"$creator-tracks.tracks",
0
]
}
}
},
{
"$lookup": {
"from": "categories",
"localField": "categoryId",
"foreignField": "_id",
"as": "related-tracks"
}
},
{
"$set": {
"related-tracks": {
"$arrayElemAt": [
"$related-tracks.tracks",
0
]
}
}
},
{
"$set": {
"related-tracks": {
"$filter": {
"input": "$related-tracks",
"cond": {
"$not": [
{
"$in": [
"$$this",
"$creator-tracks"
]
}
]
}
}
}
}
},
{
"$set": {
"creator-tracks": {
"$slice": [
{
"$filter": {
"input": "$creator-tracks",
"cond": {
"$ne": [
"$$this",
"$_id"
]
}
}
},
-5
]
}
}
},
{
"$set": {
"related-tracks": {
"$slice": [
"$related-tracks",
-5
]
}
}
},
{
"$lookup": {
"from": "tracks",
"localField": "creator-tracks",
"foreignField": "_id",
"as": "creator-tracks-all-info"
}
},
{
"$lookup": {
"from": "tracks",
"localField": "related-tracks",
"foreignField": "_id",
"as": "related-tracks-all-info"
}
}
])

how to filter the product and optimize mongodb query?

How to filter the product and optimize mongodb query,
We would like to get popular products base on some conditions i.e which products are orders, view and likes.
db.products.aggregate([
{
"$lookup": {
"from": "orders",
"localField": "_id",
"foreignField": "product_id",
"as": "orders"
}
},
{
"$addFields": {
"orderCount": {
"$size": {
"$cond": [
{
"$isArray": "$orders"
},
"$orders",
[]
]
}
}
}
},
{
"$addFields": {
"likeCount": {
"$size": {
"$cond": [
{
"$isArray": "$likes"
},
"$likes",
[]
]
}
}
}
},
{
"$addFields": {
"sumCount": {
"$sum": [
"$orderCount",
"$likeCount",
"$view"
]
}
}
},
{
$sort: {
"sumCount": -1
}
}
])
https://mongoplayground.net/p/fIG3-yHGuV6
Have to use multiple $addFields what would be best option to achieve the products that have the most orders, likes and views. please guide
thanks
I would suggest 2 corrections,
orders size does not need verification if it is an array or not condition because $lookup stage will always return in array
You can do both operations for orderCount and likeCount in a single $addFields stage
You final query would be,
db.products.aggregate([
{
"$lookup": {
"from": "orders",
"localField": "_id",
"foreignField": "product_id",
"as": "orders"
}
},
{
"$addFields": {
"orderCount": { "$size": "$orders" },
"likeCount": {
"$size": {
"$cond": [{ "$isArray": "$likes" }, "$likes", []]
}
}
}
},
{
"$addFields": {
"sumCount": {
"$sum": ["$orderCount", "$likeCount", "$view"]
}
}
},
{ "$sort": { "sumCount": -1 } }
])
Playground
You can also use projection to minimize the code
{
"$project": {
"likes": 1,
"orderCount": {
"$size": {
"$cond": {
"if": {
"$isArray": [
"$orders"
]
},
"then": "$orders",
"else": []
}
}
},
"likeCount": {
"$size": {
"$cond": {
"if": {
"$isArray": [
"$likes"
]
},
"then": "$likes",
"else": []
}
}
},
"views": {
"$ifNull": [
"$view",
0
]
}
}
},
https://mongoplayground.net/p/qUNftLP_-PN
check the mongoplayground.

Mongodb lookup for not equal fields

I want to join two collections and find the documents where has one equal field and one unequal field!
This is what I was tried, But not work
db.collectionOne.aggregate[
{
"$match": {
"$and": [
{ "$text": { "$search": "this is my query" } },
{ "b": { "$eq": "60e849054d2f0d409041b6a2" } }
]
}
},
{ "$addFields": { "pID": { "$toString": "$_id" }, "score": { "$meta": "textScore" } } },
{
"$lookup": {
"from": "collectionsTwo",
"as": "collectionsTwoName",
"pipeline": [{
"$match": {
"$expr": {
"$and": [{
"$ne": ["$fieldOne", "60dd0f98d10f072e2a225502"] // This one is unqual field
}, { "$eq": ["$pID", "$fieldTwo"] }] // This one is equal field
}
}
}]
}
},
{ "$sort": { "score": -1 } },
{ "$limit": 1 }
])
Fields in the source document, i.e. $pID are not available inside the lookup pipeline.
In order to reference those values, you would need to define a variable using let, such as:
{
"$lookup": {
"from": "collectionsTwo",
"as": "collectionsTwoName",
"let": { "srcpID":"$pID" },
"pipeline": [{
"$match": {
"$expr": {
"$and": [{
"$ne": ["$fieldOne", "60dd0f98d10f072e2a225502"] // This one is unqual field
}, { "$eq": ["$$srcpID", "$fieldTwo"] }] // This one is equal field
}
}
}]
}
},
See https://docs.mongodb.com/manual/reference/operator/aggregation/lookup/#join-conditions-and-uncorrelated-sub-queries