How to build the network architecture for a kubernetes raspberry cluster? - kubernetes

I want to deploy a website on my kubernetes cluster.
I followed this guide to set up my kubernetes cluster on my set of raspberries. Now I have tested it with some nginx containers and it works to a certain degree since I need to find the correct ip of the machine it is deployed on.
Now that I have a signed up a domain I like to forward the traffic to my deployed website on my kubernetes cluster.
I have done this before with nginx, certbot and letsencrypt without containerisation. Now I am just missing the part how kubernetes handles the network. I assumed it was similar to swarms network which forwards all the request to the correct machine. But kubernetes does it differently.
TLDNR: How to deploy a website on a self build raspberry pi kubernetes cluster?

You need to create Kubernetes Service (documentation) to expose the web service to the outside world.
There are two types of Services relevant to deployments outside of cloud providers:
ClusterIP: Exposes the Service on a cluster-internal IP. Choosing this value makes the Service only reachable from within the cluster.
This is the default ServiceType.
NodePort: Exposes the Service on each Node's IP at a static port (the NodePort). A ClusterIP Service, to which the NodePort Service
routes, is automatically created. You'll be able to contact the NodePort Service, from outside the cluster, by requesting <NodeIP>:<NodePort>.
So what you probably want is a NodePort service, which will expose the service on some fixed port on each of your Nodes (documentation and examples)

Related

Exposing Service from a BareMetal(Kubeadm) Kubernetes Cluster to outside world

Exposing Service from a BareMetal(Kubeadm) Build Kubernetes Cluster to the outside world. I am trying to access my Nginx as a service outside of the cluster to get NGINX output in the web browser.
For that, I have created a deployment and service for NGINX as shown below,
As per my search, found that we have below to expose to outside world
MetalLb
Ingress NGINX
Some HELM resources
I would like to know all these 3 or any more approaches in such way it help me to learn new things.
GOAL
Exposing Service from a BareMetal(Kubeadm) Built Kubernetes Cluster to the outside world.
How Can I make my service has its own public IP to access from the outside cluster?
You need to set up MetalLB to get an external IP address for the LoadBalancer type services. It will give a local network IP address to the service.
Then you can do port mapping (configuration in the router) of incoming traffic of port 80 and port 443 to your external service IP address.
I have done a similar setup you can check it here in detail:
https://developerdiary.me/lets-build-low-budget-aws-at-home/
You need to deploy an ingress controller in your cluster so that it gives you an entrypoint where your applications can be accessed. Traditionally, in a cloud native environment it would automatically provision a LoadBalancer for you that will read the rules you define inside your Ingress object and route your request to the appropriate service.
One of the most commonly used ingress controller is the Nginx Ingress Controller. There are multiple ways you can use to deploy it (mainfests, helm, operators). In case of bare metal clusters, there are multiple considerations which you can read here.
MetalLB is still in beta stage so its your choice if you want to use. If you don't have a hard requirement to expose the ingress controller as a LoadBalancer, you can expose it as a NodePort Service that will accessible across all your nodes in the cluster. You can then map that NodePort Service in your DNS so that the ingress rules are evaluated.

What is a loadbalancer in Kubernetes, Why do different Kubernetes engines like GKE have their own loadbalancer

Loadbalancer is used to handle a request and forward that request to a particular pod, but my question is how does the GKE LoadBalancer work, how is it different from the LoadBalancer we have in minikube, and how should we use LoadBalancer properly.
In GKE when you add a Service of type LoadBalancer, it makes the necessary Google Cloud API calls to create either an external network LB, or an internal TCP/UDP LB.
The cloud.google.com/load-balancer-type: "Internal" annotation denotes an internal LB; otherwise, GKE creates an external network load balancer. This type of LB operates at layer 3/4, and is not an application load balancer, and thus not aware of HTTP requests or headers.
The LB service was designed for deployments in external cloud providers. In Minikube you need to use the tunnel feature to expose it. tunnel runs as a process, creating a network route on the host to the service CIDR of the cluster using the cluster’s IP address as a gateway. The tunnel command exposes the external IP directly to programs running on the host OS.

Accessing micro service end point from deployed micro service using Kubernetes orchestration

I am trying to deploy my sample micro service Docker image in Kubernetes cluster having 2 node. I explored everything about Pods, Services, Deployment, StatefulSets and Daemon-sets etc.
I am trying to create a sample deployment and Service for that. Here I explored about how deployment provides the scalability and load balancing functionality. And exploring about service discovery by providing Services ClusterIp.
I have two questions:
My scenario is that I am trying to deploy microservice on my on-premise Ubuntu machine. The machine has the IP address of 192.168.1.15. When I am referring Kubernetes, service will also have one clusterIP.
If my microservice end point is /api/v1/loadCustomer, how I can call this end point? Do I need to use clusterIP also ? Can I call simply 192.168.1.15:8080/api/v1/loadCustomers ?
What is the role of clusterIP when I am calling my end point ? Can I directly use port?
I am referring to the following link for exploration:
https://kubernetes.io/docs/concepts/services-networking/connect-applications-service/
tldr:
you can not access the application using the clusterIP from the outside of the cluster. you can access the application using either loadbalancer's IP (type=LoadBalaner) or Node's IP (type=NodePort).
benefit of clusterIP:
As you know that pods can be created and terminated during its life-cycle consequently IP (endpoint IP)address created and terminated.Therefore, clusterIP is static which does not depends of the life-cycle of the pods.
Long Answer
In a Kubernetes cluster
an application or pod has following abstraction.
Endpoint IP and Port:It is provided by the CNI Plugins such as flannel, calico.
Each pod has an IP and tragetPort which is UNIQUE.
you can list and watch the endpoints by the following commands.
kubectl get endpoints --all-namespaces
clusterIP and port : It is provided by the kube-proxy component.
The replicated pods share a clusterIP and Port.
Load-balancing of request to the replicated pods.
internally expose so that other pod can discover it
you can list and watch clusterIP and port with the following command
kubectl get services --all-namespaces
externalIP and port: It can be layer 3-4 load balancer's IP and port or node's IP and Nodeport.
if you want to use loadbalancer's IP and port, you can use type=LoadBalaner in service file.
If you want to use node's IP, you need to use type=NodePort in service file.

kubernetes service exposed to host ip

I created a kubernetes service something like this on my 4 node cluster:
kubectl expose deployment distcc-deploy --name=distccsvc --port=8080
--target-port=3632 --type=LoadBalancer
The problem is how do I expose this service to an external ip. Without an external ip you can not ping or reach this service endpoint from outside network.
I am not sure if i need to change the kubedns or put some kind of changes.
Ideally I would like the service to be exposed on the host ip.
Like http://localhost:32876
hypothetically let's say
i have a 4 node vm on which i am running let's say nginx service. i expose it as a lodabalancer service. how can i access the nginx using this service from the vm ?
let's say the service name is nginxsvc is there a way i can do http://:8080. how will i get this here for my 4 node vm ?
LoadBalancer does different things depending on where you deployed kubernetes. If you deployed on AWS (using kops or some other tool) it'll create an elastic load balancer to expose the service. If you deployed on GCP it'll do something similar - Google terminology escapes me at the moment. These are separate VMs in the cloud routing traffic to your service. If you're playing around in minikube LoadBalancer doesn't really do anything, it does a node port with the assumption that the user understands minikube isn't capable of providing a true load balancer.
LoadBalancer is supposed to expose your service via a brand new IP address. So this is what happens on the cloud providers, they requisition VMs with a separate public IP address (GCP gives a static address and AWS a DNS). NodePort will expose as a port on kubernetes node running the pod. This isn't a workable solution for a general deployment but works ok while developing.

What's the difference between ClusterIP, NodePort and LoadBalancer service types in Kubernetes?

Question 1 - I'm reading the documentation and I'm slightly confused with the wording. It says:
ClusterIP: Exposes the service on a cluster-internal IP. Choosing this value makes the service only reachable from within the cluster. This is the default ServiceType
NodePort: Exposes the service on each Node’s IP at a static port (the NodePort). A ClusterIP service, to which the NodePort service will route, is automatically created. You’ll be able to contact the NodePort service, from outside the cluster, by requesting <NodeIP>:<NodePort>.
LoadBalancer: Exposes the service externally using a cloud provider’s load balancer. NodePort and ClusterIP services, to which the external load balancer will route, are automatically created.
Does the NodePort service type still use the ClusterIP but just at a different port, which is open to external clients? So in this case is <NodeIP>:<NodePort> the same as <ClusterIP>:<NodePort>?
Or is the NodeIP actually the IP found when you run kubectl get nodes and not the virtual IP used for the ClusterIP service type?
Question 2 - Also in the diagram from the link below:
Is there any particular reason why the Client is inside the Node? I assumed it would need to be inside a Clusterin the case of a ClusterIP service type?
If the same diagram was drawn for NodePort, would it be valid to draw the client completely outside both the Node andCluster or am I completely missing the point?
A ClusterIP exposes the following:
spec.clusterIp:spec.ports[*].port
You can only access this service while inside the cluster. It is accessible from its spec.clusterIp port. If a spec.ports[*].targetPort is set it will route from the port to the targetPort. The CLUSTER-IP you get when calling kubectl get services is the IP assigned to this service within the cluster internally.
A NodePort exposes the following:
<NodeIP>:spec.ports[*].nodePort
spec.clusterIp:spec.ports[*].port
If you access this service on a nodePort from the node's external IP, it will route the request to spec.clusterIp:spec.ports[*].port, which will in turn route it to your spec.ports[*].targetPort, if set. This service can also be accessed in the same way as ClusterIP.
Your NodeIPs are the external IP addresses of the nodes. You cannot access your service from spec.clusterIp:spec.ports[*].nodePort.
A LoadBalancer exposes the following:
spec.loadBalancerIp:spec.ports[*].port
<NodeIP>:spec.ports[*].nodePort
spec.clusterIp:spec.ports[*].port
You can access this service from your load balancer's IP address, which routes your request to a nodePort, which in turn routes the request to the clusterIP port. You can access this service as you would a NodePort or a ClusterIP service as well.
To clarify for anyone who is looking for what is the difference between the 3 on a simpler level. You can expose your service with minimal ClusterIp (within k8s cluster) or larger exposure with NodePort (within cluster external to k8s cluster) or LoadBalancer (external world or whatever you defined in your LB).
ClusterIp exposure < NodePort exposure < LoadBalancer exposure
ClusterIp
Expose service through k8s cluster with ip/name:port
NodePort
Expose service through Internal network VM's also external to k8s ip/name:port
LoadBalancer
Expose service through External world or whatever you defined in your LB.
ClusterIP: Services are reachable by pods/services in the Cluster
If I make a service called myservice in the default namespace of type: ClusterIP then the following predictable static DNS address for the service will be created:
myservice.default.svc.cluster.local (or just myservice.default, or by pods in the default namespace just "myservice" will work)
And that DNS name can only be resolved by pods and services inside the cluster.
NodePort: Services are reachable by clients on the same LAN/clients who can ping the K8s Host Nodes (and pods/services in the cluster) (Note for security your k8s host nodes should be on a private subnet, thus clients on the internet won't be able to reach this service)
If I make a service called mynodeportservice in the mynamespace namespace of type: NodePort on a 3 Node Kubernetes Cluster. Then a Service of type: ClusterIP will be created and it'll be reachable by clients inside the cluster at the following predictable static DNS address:
mynodeportservice.mynamespace.svc.cluster.local (or just mynodeportservice.mynamespace)
For each port that mynodeportservice listens on a nodeport in the range of 30000 - 32767 will be randomly chosen. So that External clients that are outside the cluster can hit that ClusterIP service that exists inside the cluster.
Lets say that our 3 K8s host nodes have IPs 10.10.10.1, 10.10.10.2, 10.10.10.3, the Kubernetes service is listening on port 80, and the Nodeport picked at random was 31852.
A client that exists outside of the cluster could visit 10.10.10.1:31852, 10.10.10.2:31852, or 10.10.10.3:31852 (as NodePort is listened for by every Kubernetes Host Node) Kubeproxy will forward the request to mynodeportservice's port 80.
LoadBalancer: Services are reachable by everyone connected to the internet* (Common architecture is L4 LB is publicly accessible on the internet by putting it in a DMZ or giving it both a private and public IP and k8s host nodes are on a private subnet)
(Note: This is the only service type that doesn't work in 100% of Kubernetes implementations, like bare metal Kubernetes, it works when Kubernetes has cloud provider integrations.)
If you make mylbservice, then a L4 LB VM will be spawned (a cluster IP service, and a NodePort Service will be implicitly spawned as well). This time our NodePort is 30222. the idea is that the L4 LB will have a public IP of 1.2.3.4 and it will load balance and forward traffic to the 3 K8s host nodes that have private IP addresses. (10.10.10.1:30222, 10.10.10.2:30222, 10.10.10.3:30222) and then Kube Proxy will forward it to the service of type ClusterIP that exists inside the cluster.
You also asked:
Does the NodePort service type still use the ClusterIP? Yes*
Or is the NodeIP actually the IP found when you run kubectl get nodes? Also Yes*
Lets draw a parrallel between Fundamentals:
A container is inside a pod. a pod is inside a replicaset. a replicaset is inside a deployment.
Well similarly:
A ClusterIP Service is part of a NodePort Service. A NodePort Service is Part of a Load Balancer Service.
In that diagram you showed, the Client would be a pod inside the cluster.
Lets assume you created a Ubuntu VM on your local machine. It's IP address is 192.168.1.104.
You login into VM, and installed Kubernetes. Then you created a pod where nginx image running on it.
1- If you want to access this nginx pod inside your VM, you will create a ClusterIP bound to that pod for example:
$ kubectl expose deployment nginxapp --name=nginxclusterip --port=80 --target-port=8080
Then on your browser you can type ip address of nginxclusterip with port 80, like:
http://10.152.183.2:80
2- If you want to access this nginx pod from your host machine, you will need to expose your deployment with NodePort. For example:
$ kubectl expose deployment nginxapp --name=nginxnodeport --port=80 --target-port=8080 --type=NodePort
Now from your host machine you can access to nginx like:
http://192.168.1.104:31865/
In my dashboard they appear as:
Below is a diagram shows basic relationship.
Feature
ClusterIP
NodePort
LoadBalancer
Exposition
Exposes the Service on an internal IP in the cluster.
Exposing services to external clients
Exposing services to external clients
Cluster
This type makes the Service only reachable from within the cluster
A NodePort service, each cluster node opens a port on the node itself (hence the name) and redirects traffic received on that port to the underlying service.
A LoadBalancer service accessible through a dedicated load balancer, provisioned from the cloud infrastructure Kubernetes is running on
Accessibility
It is default service and Internal clients send requests to a stable internal IP address.
The service is accessible at the internal cluster IP-port, and also through a dedicated port on all nodes.
Clients connect to the service through the load balancer’s IP.
Yaml Config
type: ClusterIP
type: NodePort
type: LoadBalancer
Port Range
Any public ip form Cluster
30000 - 32767
Any public ip form Cluster
User Cases
For internal communication
Best for testing public or private access or providing access for a small amount of time.
widely used For External communication
Sources:
Kubernetes in Action
Kubernetes.io Services
Kubernetes Services simply visually explained
clusterIP : IP accessible inside cluster (across nodes within d cluster).
nodeA : pod1 => clusterIP1, pod2 => clusterIP2
nodeB : pod3 => clusterIP3.
pod3 can talk to pod1 via their clusterIP network.
nodeport : to make pods accessible from outside the cluster via nodeIP:nodeport, it will create/keep clusterIP above as its clusterIP network.
nodeA => nodeIPA : nodeportX
nodeB => nodeIPB : nodeportX
you might access service on pod1 either via nodeIPA:nodeportX OR nodeIPB:nodeportX. Either way will work because kube-proxy (which is installed in each node) will receive your request and distribute it [redirect it(iptables term)] across nodes using clusterIP network.
Load balancer
basically just putting LB in front, so that inbound traffic is distributed to nodeIPA:nodeportX and nodeIPB:nodeportX then continue with the process flow number 2 above.
Practical understanding.
I have created 2 services 1 for NodePort and other for ClusterIP
If I wanted to access the service inside the cluster(from master or any worker node) than both are accessible.
Now if I wanted to access the services from outside the cluster then Nodeport only accessible not ClusterIP.
Here you can see localhost wont listening on port 80 even my nginx container are listening on port 80.
Yes, this is the only difference.
ClusterIP. Exposes a service which is only accessible from within the cluster.
NodePort. Exposes a service via a static port on each node’s IP.
LoadBalancer. Exposes the service via the cloud provider’s load balancer.
ExternalName. Maps a service to a predefined externalName field by returning a value for the CNAME record.
Practical Use Case
Let be assume you have to create below architecture in your cluster. I guess its pretty common.
Now, user only going to communicate with frontend on some port. Backend and DB services are always hidden to the external world.
Summary:
There are five types of Services:
ClusterIP (default): Internal clients send requests to a stable internal IP address.
NodePort: Clients send requests to the IP address of a node on one or more nodePort values that are specified by the Service.
LoadBalancer: Clients send requests to the IP address of a network load balancer.
ExternalName: Internal clients use the DNS name of a Service as an alias for an external DNS name.
Headless: You can use a headless service when you want a Pod grouping, but don't need a stable IP address.
The NodePort type is an extension of the ClusterIP type. So a Service of type NodePort has a cluster IP address.
The LoadBalancer type is an extension of the NodePort type. So a Service of type LoadBalancer has a cluster IP address and one or more nodePort values.
Illustrate through Image
Details
ClusterIP
ClusterIP is the default and most common service type.
Kubernetes will assign a cluster-internal IP address to ClusterIP service. This makes the service only reachable within the cluster.
You cannot make requests to service (pods) from outside the cluster.
You can optionally set cluster IP in the service definition file.
Use Cases
Inter-service communication within the cluster. For example, communication between the front-end and back-end components of your app.
NodePort
NodePort service is an extension of ClusterIP service. A ClusterIP Service, to which the NodePort Service routes, is automatically created.
It exposes the service outside of the cluster by adding a cluster-wide port on top of ClusterIP.
NodePort exposes the service on each Node’s IP at a static port (the NodePort). Each node proxies that port into your Service. So, external traffic has access to fixed port on each Node. It means any request to your cluster on that port gets forwarded to the service.
You can contact the NodePort Service, from outside the cluster, by requesting :.
Node port must be in the range of 30000–32767. Manually allocating a port to the service is optional. If it is undefined, Kubernetes will automatically assign one.
If you are going to choose node port explicitly, ensure that the port was not already used by another service.
Use Cases
When you want to enable external connectivity to your service.
Using a NodePort gives you the freedom to set up your own load balancing solution, to configure environments that are not fully supported by
Kubernetes, or even to expose one or more nodes’ IPs directly.
Prefer to place a load balancer above your nodes to avoid node failure.
LoadBalancer
LoadBalancer service is an extension of NodePort service. NodePort and ClusterIP Services, to which the external load balancer routes, are automatically created.
It integrates NodePort with cloud-based load balancers.
It exposes the Service externally using a cloud provider’s load balancer.
Each cloud provider (AWS, Azure, GCP, etc) has its own native load balancer implementation. The cloud provider will create a load balancer, which then automatically routes requests to your Kubernetes Service.
Traffic from the external load balancer is directed at the backend Pods. The cloud provider decides how it is load balanced.
The actual creation of the load balancer happens asynchronously.
Every time you want to expose a service to the outside world, you have to create a new LoadBalancer and get an IP address.
Use Cases
When you are using a cloud provider to host your Kubernetes cluster.
ExternalName
Services of type ExternalName map a Service to a DNS name, not to a typical selector such as my-service.
You specify these Services with the spec.externalName parameter.
It maps the Service to the contents of the externalName field (e.g. foo.bar.example.com), by returning a CNAME record with its value.
No proxying of any kind is established.
Use Cases
This is commonly used to create a service within Kubernetes to represent an external datastore like a database that runs externally to Kubernetes.
You can use that ExternalName service (as a local service) when Pods from one namespace talk to a service in another namespace.
Here is the answer for the Question 2 about the diagram, since it still doesn't seem to be answered directly:
Is there any particular reason why the Client is inside the Node? I
assumed it would need to be inside a Clusterin the case of a ClusterIP
service type?
At the diagram the Client is placed inside the Node to highlight the fact that ClusterIP is only accessible on a machine which has a running kube-proxy daemon. Kube-proxy is responsible for configuring iptables according to the data provided by apiserver (which is also visible at the diagram). So if you create a virtual machine and put it into the network where the Nodes of your cluster are and also properly configure networking on that machine so that individual cluster pods are accessible from there, even with that ClusterIP services will not be accessible from that VM, unless the VM has it's iptables configured properly (which doesn't happen without kubeproxy running on that VM).
If the same diagram was drawn for NodePort, would it be valid to draw
the client completely outside both the Node andCluster or am I
completely missing the point?
It would be valid to draw client outside the Node and Cluster, because NodePort is accessible from any machine which has access to a cluster Node and the corresponding port, including machines outside the cluster.
And do not forget the "new" service type (from the k8s docu):
ExternalName: Maps the Service to the contents of the externalName field (e.g. foo.bar.example.com), by returning a CNAME record with its value. No proxying of any kind is set up.
Note: You need either kube-dns version 1.7 or CoreDNS version 0.0.8 or higher to use the ExternalName type.