Data processed in Flink is not saved in the Cassandra database - scala

I'm implementing the application that fetches data from external environments via Apache Kafka.
This data is first mapped to objects and then passed to the process (TimeWindow) (look at the code below)
val busDataStream = env.addSource(kafkaConsumer)
.filter { _.nonEmpty}
.flatMap(line => JsonMethods.parse(line).toOption)
.map(_.extract[BusModel])
class CustomProcess() extends ProcessWindowFunction[BusModel, BusModel, String, TimeWindow] {
lazy val busState: ValueState[BusModel] = getRuntimeContext.getState(
new ValueStateDescriptor[BusModel]("BusModel state", classOf[BusModel])
)
override def process(key: String, context: Context, elements: Iterable[BusModel], out: Collector[BusModel]): Unit = {
for (e <- elements) {
if (busState.value() != null) {
out.collect(busState.value())
val result: Double = calculateSomething(e, busState.value())
}
busState.update(e)
println(s"BusState: ${busState.value()}")
}
}
}
val dataStream: DataStream[BusModel] = busDataStream
.keyBy(_.VehicleNumber)
.timeWindow(Time.seconds(10))
.process(new CustomCountProc)
After the new information is prepared, I would like this data to be put into the Cassandra database. I tried to implement this value using a connector, but unfortunately the new records don't show up in the database ...
I also added a createTypeInformation method which should map the data of the selected object to the column types in the database, but that unfortunately didn't help.
createTypeInformation[(String, Double, Double, Double)]
val sinkStream = dataStream
.map(busRide => (
java.util.UUID.randomUUID.toString,
busRide.valueA,
busRide.valueB,
busRide.valueC,
))
CassandraSink.addSink(sinkStream)
.setQuery("INSERT INTO transport.bus_flink_speed(" +
"\"FirstColumn\", " +
"\"SecondColumn " +
"\"ThirdColumn\", " +
"\"ForthColumn\")" +
" values (?, ?, ?, ?);")
.setHost("localhost")
.build()
env.execute("Flink Kafka Example")
Does anyone have any idea why this doesn't work?

Related

Spark (Scala) conditionally write JSON to multiple dynamic output locations

I have a problem to solve where data comes in as JSON from kinesis like below:
{
datatype: "datatype_1"
id : "id_1"
data : {...}
}
All records in the stream then need to go through a lookup function with datatype and id passed as arguments to find a unique group of locations to write the items to in JSON.
i.e.
def get_locations(id: String, datatype: String): Array[String] = //custom logic here
where the resultant array would look like
[ "s3:///example_bucket/example_folder_1", "s3:///example_bucket2/example_folder_2"]
My question is how do I most efficiently group records coming off the stream by datatype and id and write to the various s3 locations. I was hoping to do something like below:
sparkSession.readStream.format("kinesis")
.option("streamName", kinesis_stream_name)
.option("initialPosition", "latest")
.option("region", aws_region)
.load()
//more transforms
.select(
col("datatype"),
col("id"),
col("data")
)
// Not sure how I can do what's below
// .write.partitionBy("id", "datatype")
// .format("json")
// .option("compression","gzip")
// .save(get_locations("id","datatype")) //saving to all locations in result array
I do advise you to create the bucket in the code in the runtime as a best practice, you can use the node.js aws S3 API or your runtime language API
As you said in your comment you are getting the parameters from your runtime.
However as an answer to your question here is a function that creates a bucket containing the id in its name (you can change it to the format that you like ) then in that bucket you will have a lot of files based on the partition of the dataframe while saving:
import java.util
import com.amazonaws.regions.Regions
import com.amazonaws.services.s3.model.AmazonS3Exception
import com.amazonaws.services.s3.{AmazonS3, AmazonS3ClientBuilder}
def get_locations(id: String, datatype: String) = {
//you can configure the default region to the adequat region
//of course
val s3: AmazonS3 = AmazonS3ClientBuilder.standard.withRegion(Regions.DEFAULT_REGION).build
object CreateBucket {
def getBucket(bucket_name: String): Bucket = {
var named_bucket = null.asInstanceOf[Bucket]
val buckets: util.List[Bucket] = s3.listBuckets
import scala.collection.JavaConversions._
for (b <- buckets) {
if (b.getName.equals(bucket_name)) named_bucket = b
}
named_bucket
}
def createBucket(bucket_name: String): Bucket = {
var b = null.asInstanceOf[Bucket]
if (s3.doesBucketExistV2(bucket_name)) {
System.out.format("Bucket %s already exists.\n", bucket_name)
b = getBucket(bucket_name)
}
else try b = s3.createBucket(bucket_name)
catch {
case e: AmazonS3Exception =>
System.err.println(e.getErrorMessage)
}
b
}
}
//change your bucket name here if
//you like
val bucket_name = "bucket_" + id
var my_bucket = null.asInstanceOf[Bucket]
if (s3.doesBucketExistV2(bucket_name)) {
System.out.format("Bucket %s already exists.\n", bucket_name)
my_bucket = CreateBucket.getBucket(bucket_name)
}
else try my_bucket = s3.createBucket(bucket_name)
catch {
case e: AmazonS3Exception =>
System.err.println(e.getErrorMessage)
}
my_bucket
}
//I don't know how you will get those parameters
var id = " "
var datatype = " "
df.write.partitionBy("id", "dataType")
.format("json")
.option("compression", "gzip")
.save(get_locations(id, datatype).toString)
Don't forget to add the dependecies in maven or in build.sbt with the version that you have already in aws (sdk) :
<dependency>
<groupId>com.amazonaws</groupId>
<artifactId>aws-java-sdk-s3</artifactId>
<version>1.11.979</version>
</dependency>

Reading multiple files with akka streams in scala

I'am trying to read multiple files with akka streams and put result in a list.
I can read one file with no problem. the return type is Future[Seq[String]]. problem is processing the sequence inside the Future must go inside an onComplete{}.
i'am trying the following code but abviously it will not work. the list acc outside of the onComplete is empty. but holds values inside the inComplete. I understand the problem but i don't know how to approach this.
// works fine
def readStream(path: String, date: String): Future[Seq[String]] = {
implicit val system = ActorSystem("Sys")
val settings = ActorMaterializerSettings(system)
implicit val materializer = ActorMaterializer(settings)
val result: Future[Seq[String]] =
FileIO.fromPath(Paths.get(path + "transactions_" + date +
".data"))
.via(Framing.delimiter(ByteString("\n"), 256, true))
.map(_.utf8String)
.toMat(Sink.seq)(Keep.right)
.run()
var aa: List[scala.Array[String]] = Nil
result.onComplete(x => {
aa = x.get.map(line => line.split('|')).toList
})
result
}
//this won't work
def concatFiles(path : String, date : String, numberOfDays : Int) :
List[scala.Array[String]] = {
val formatter = DateTimeFormatter.ofPattern("yyyyMMdd");
val formattedDate = LocalDate.parse(date, formatter);
var acc = List[scala.Array[String]]()
for( a <- 0 to numberOfDays){
val date = formattedDate.minusDays(a).toString().replace("-", "")
val transactions = readStream(path , date)
var result: List[scala.Array[String]] = Nil
transactions.onComplete(x => {
result = x.get.map(line => line.split('|')).toList
acc= acc ++ result })
}
acc}
General Solution
Given an Iterator of Paths values a Source of the file lines can be created by combining FileIO & flatMapConcat:
val lineSourceFromPaths : (() => Iterator[Path]) => Source[String, _] = pathsIterator =>
Source
.fromIterator(pathsIterator)
.flatMapConcat { path =>
FileIO
.fromPath(path)
.via(Framing.delimiter(ByteString("\n"), 256, true))
.map(_.utf8String)
}
Application to Question
The reason your List is empty is because the Future values have not completed and therefore your mutable list is not be updated before the function returns the list.
Critique of Code in Question
The organization and style of the code within the question suggest several misunderstandings related to akka & Future. I think you are attempting a rather complex workflow without understanding the fundamentals of the tools you are trying to use.
1.You should not create an ActorSystem each time a function is being called. There is usually 1 ActorSystem per application and it's created only once.
implicit val system = ActorSystem("Sys")
val settings = ActorMaterializerSettings(system)
implicit val materializer = ActorMaterializer(settings)
def readStream(...
2.You should try to avoid mutable collections and instead use Iterator with corresponding functionality:
def concatFiles(path : String, date : String, numberOfDays : Int) : List[scala.Array[String]] = {
val formattedDate = LocalDate.parse(date, DateTimeFormatter.ofPattern("yyyyMMdd"))
val pathsIterator : () => Iterator[Path] = () =>
Iterator
.range(0, numberOfDays+1)
.map(formattedDate.minusDays)
.map(_.String().replace("-", "")
.map(path => Paths.get(path + "transactions_" + date + ".data")
lineSourceFromPaths(pathsIterator)
3.Since you are dealing with Futures you should not wait for Futures to complete and should instead change the return type of concateFiles to Future[List[Array[String]]].

Scala - Tweets subscribing - Kafka Topic and Ingest into HBase

I have to consume tweets from a Kafka Topic and ingest the same into HBase. The following is the code that i wrote but this is not working properly.
The main code is not calling "convert" method and hence no records are ingested into HBase table. Can someone help me please.
tweetskafkaStream.foreachRDD(rdd => {
println("Inside For Each RDD" )
rdd.foreachPartition( record => {
println("Inside For Each Partition" )
val data = record.map(r => (r._1, r._2)).map(convert)
})
})
def convert(t: (String, String)) = {
println("in convert")
//println("first param value ", t._1)
//println("second param value ", t._2)
val hConf = HBaseConfiguration.create()
hConf.set(TableOutputFormat.OUTPUT_TABLE,hbaseTableName)
hConf.set("hbase.zookeeper.quorum", "192.168.XXX.XXX:2181")
hConf.set("hbase.master", "192.168.XXX.XXX:16000")
hConf.set("hbase.rootdir","hdfs://192.168.XXX.XXX:9000/hbase")
val today = Calendar.getInstance.getTime
val printformat = new SimpleDateFormat("yyyyMMddHHmmss")
val id = printformat.format(today)
val p = new Put(Bytes.toBytes(id))
p.add(Bytes.toBytes("data"), Bytes.toBytes("tweet_text"),(t._2).getBytes())
(id, p)
val mytable = new HTable(hConf,hbaseTableName)
mytable.put(p)
}
I don't want to use the current datetime as the key (t._1) and hence constructing that in my convert method.
Thanks
Bala
Instead of foreachPartition, I changed it to foreach. This worked well.

Materialize mapWithState stateSnapShots to database for later resume of spark streaming app

I have a Spark scala streaming app that sessionizes user generated events coming from Kafka, using mapWithState. I want to mature the setup by enabling to pauze and resume the app in the case of maintenance. I’m already writing kafka offset information to a database, so when restarting the app I can pick up at the last offset processed. But I also want to keep the state information.
So my goal is to;
materialize session information after a key identifying the user times out.
materialize a .stateSnapshot() when I gracefully shutdown the application, so I can use that data when restarting the app by feeding it as a parameter to StateSpec.
1 is working, with 2 I have issues.
For the sake of completeness, I also describe 1 because I’m always interested in a better solution for it:
1) materializing session info after key time out
Inside my update function for mapWithState, I have:
if (state.isTimingOut()) {
// if key is timing out.
val output = (key, stateFilterable(isTimingOut = true
, start = state.get().start
, end = state.get().end
, duration = state.get().duration
))
That isTimingOut boolean I then later on use as:
streamParsed
.filter(a => a._2.isTimingOut)
.foreachRDD(rdd =>
rdd
.map(stuff => Model(key = stuff._1,
start = stuff._2.start,
duration = stuff._2.duration)
.saveToCassandra(keyspaceName, tableName)
)
2) materialize a .stateSnapshot() with graceful shutdown
Materializing snapshot info doesn’t work. What is tried:
// define a class Listener
class Listener(ssc: StreamingContext, state: DStream[(String, stateFilterable)]) extends Runnable {
def run {
if( ssc == null )
System.out.println("The spark context is null")
else
System.out.println("The spark context is fine!!!")
var input = "continue"
while( !input.equals("D")) {
input = readLine("Press D to kill: ")
System.out.println(input + " " + input.equals("D"))
}
System.out.println("Accessing snapshot and saving:")
state.foreachRDD(rdd =>
rdd
.map(stuff => Model(key = stuff._1,
start = stuff._2.start,
duration = stuff._2.duration)
.saveToCassandra("some_keyspace", "some_table")
)
System.out.println("Stopping context!")
ssc.stop(true, true)
System.out.println("We have stopped!")
}
}
// Inside the app object:
val state = streamParsed.stateSnapshots()
var listener = new Thread(new Listener(ssc, state))
listener.start()
So the full code becomes:
package main.scala.cassandra_sessionizing
import java.text.SimpleDateFormat
import java.util.Calendar
import org.apache.spark.streaming.dstream.{DStream, MapWithStateDStream}
import scala.collection.immutable.Set
import org.apache.spark.{SparkContext, SparkConf}
import org.apache.spark.streaming._
import org.apache.spark.streaming.Duration
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.types.{StructType, StructField, StringType, DoubleType, LongType, ArrayType, IntegerType}
import _root_.kafka.serializer.StringDecoder
import com.datastax.spark.connector._
import com.datastax.spark.connector.cql.CassandraConnector
case class userAction(datetimestamp: Double
, action_name: String
, user_key: String
, page_id: Integer
)
case class actionTuple(pages: scala.collection.mutable.Set[Int]
, start: Double
, end: Double)
case class stateFilterable(isTimingOut: Boolean
, start: Double
, end: Double
, duration: Int
, pages: Set[Int]
, events: Int
)
case class Model(user_key: String
, start: Double
, duration: Int
, pages: Set[Int]
, events: Int
)
class Listener(ssc: StreamingContext, state: DStream[(String, stateFilterable)]) extends Runnable {
def run {
var input = "continue"
while( !input.equals("D")) {
input = readLine("Press D to kill: ")
System.out.println(input + " " + input.equals("D"))
}
// Accessing snapshot and saving:
state.foreachRDD(rdd =>
rdd
.map(stuff => Model(user_key = stuff._1,
start = stuff._2.start,
duration = stuff._2.duration,
pages = stuff._2.pages,
events = stuff._2.events))
.saveToCassandra("keyspace1", "snapshotstuff")
)
// Stopping context
ssc.stop(true, true)
}
}
object cassandra_sessionizing {
// where we'll store the stuff in Cassandra
val tableName = "sessionized_stuff"
val keyspaceName = "keyspace1"
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("cassandra-sessionizing")
.set("spark.cassandra.connection.host", "10.10.10.10")
.set("spark.cassandra.auth.username", "keyspace1")
.set("spark.cassandra.auth.password", "blabla")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
import sqlContext.implicits._
// setup the cassandra connector and recreate the table we'll use for storing the user session data.
val cc = CassandraConnector(conf)
cc.withSessionDo { session =>
session.execute(s"""DROP TABLE IF EXISTS $keyspaceName.$tableName;""")
session.execute(
s"""CREATE TABLE IF NOT EXISTS $keyspaceName.$tableName (
user_key TEXT
, start DOUBLE
, duration INT
, pages SET<INT>
, events INT
, PRIMARY KEY(user_key, start)) WITH CLUSTERING ORDER BY (start DESC)
;""")
}
// setup the streaming context and make sure we can checkpoint, given we're using mapWithState.
val ssc = new StreamingContext(sc, Seconds(60))
ssc.checkpoint("hdfs:///user/keyspace1/streaming_stuff/")
// Defining the stream connection to Kafka.
val kafkaStream = {
KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc,
Map("metadata.broker.list" -> "kafka1.prod.stuff.com:9092,kafka2.prod.stuff.com:9092"), Set("theTopic"))
}
// this schema definition is needed so the json string coming from Kafka can be parsed into a dataframe using spark read.json.
// if an event does not conform to this structure, it will result in all null values, which are filtered out later.
val struct = StructType(
StructField("datetimestamp", DoubleType, nullable = true) ::
StructField("sub_key", StructType(
StructField("user_key", StringType, nullable = true) ::
StructField("page_id", IntegerType, nullable = true) ::
StructField("name", StringType, nullable = true) :: Nil), nullable = true) ::
)
/*
this is the function needed to keep track of an user key's session.
3 options:
1) key already exists, and new values are coming in to be added to the state.
2) key is new, so initialize the state with the incoming value
3) key is timing out, so mark it with a boolean that can be used by filtering later on. Given the boolean, the data can be materialized to cassandra.
*/
def trackStateFunc(batchTime: Time
, key: String
, value: Option[actionTuple]
, state: State[stateFilterable])
: Option[(String, stateFilterable)] = {
// 1 : if key already exists and we have a new value for it
if (state.exists() && value.orNull != null) {
var current_set = state.getOption().get.pages
var current_start = state.getOption().get.start
var current_end = state.getOption().get.end
if (value.get.pages != null) {
current_set ++= value.get.pages
}
current_start = Array(current_start, value.get.start).min // the starting epoch is used to initialize the state, but maybe some earlier events are processed a bit later.
current_end = Array(current_end, value.get.end).max // always update the end time of the session with new events coming in.
val new_event_counter = state.getOption().get.events + 1
val new_output = stateFilterable(isTimingOut = false
, start = current_start
, end = current_end
, duration = (current_end - current_start).toInt
, pages = current_set
, events = new_event_counter)
val output = (key, new_output)
state.update(new_output)
return Some(output)
}
// 2: if key does not exist and we have a new value for it
else if (value.orNull != null) {
var new_set: Set[Int] = Set()
val current_value = value.get.pages
if (current_value != null) {
new_set ++= current_value
}
val event_counter = 1
val current_start = value.get.start
val current_end = value.get.end
val new_output = stateFilterable(isTimingOut = false
, start = current_start
, end = current_end
, duration = (current_end - current_start).toInt
, pages = new_set
, events = event_counter)
val output = (key, new_output)
state.update(new_output)
return Some(output)
}
// 3: if key is timing out
if (state.isTimingOut()) {
val output = (key, stateFilterable(isTimingOut = true
, start = state.get().start
, end = state.get().end
, duration = state.get().duration
, pages = state.get().pages
, events = state.get().events
))
return Some(output)
}
// this part of the function should never be reached.
throw new Error(s"Entered dead end with $key $value")
}
// defining the state specification used later on as a step in the stream pipeline.
val stateSpec = StateSpec.function(trackStateFunc _)
.numPartitions(16)
.timeout(Seconds(4000))
// RDD 1
val streamParsedRaw = kafkaStream
.map { case (k, v: String) => v } // key is empty, so get the value containing the json string.
.transform { rdd =>
val df = sqlContext.read.schema(struct).json(rdd) // apply schema defined above and parse the json into a dataframe,
.selectExpr("datetimestamp"
, "action.name AS action_name"
, "action.user_key"
, "action.page_id"
)
df.as[userAction].rdd // transform dataframe into spark Dataset so we easily cast to the case class userAction.
}
val initialCount = actionTuple(pages = collection.mutable.Set(), start = 0.0, end = 0.0)
val addToCounts = (left: actionTuple, ua: userAction) => {
val current_start = ua.datetimestamp
val current_end = ua.datetimestamp
if (ua.page_id != null) left.pages += ua.page_id
actionTuple(left.pages, current_start, current_end)
}
val sumPartitionCounts = (p1: actionTuple, p2: actionTuple) => {
val current_start = Array(p1.start, p2.start).min
val current_end = Array(p1.end, p2.end).max
actionTuple(p1.pages ++= p2.pages, current_start, current_end)
}
// RDD 2: add the mapWithState part.
val streamParsed = streamParsedRaw
.map(s => (s.user_key, s)) // create key value tuple so we can apply the mapWithState to the user_key.
.transform(rdd => rdd.aggregateByKey(initialCount)(addToCounts, sumPartitionCounts)) // reduce to one row per user key for each batch.
.mapWithState(stateSpec)
// RDD 3: if the app is shutdown, this rdd should be materialized.
val state = streamParsed.stateSnapshots()
state.print(2)
// RDD 4: Crucial: loop up sessions timing out, extract the fields that we want to keep and materialize in Cassandra.
streamParsed
.filter(a => a._2.isTimingOut)
.foreachRDD(rdd =>
rdd
.map(stuff => Model(user_key = stuff._1,
start = stuff._2.start,
duration = stuff._2.duration,
pages = stuff._2.pages,
events = stuff._2.events))
.saveToCassandra(keyspaceName, tableName)
)
// add a listener hook that we can use to gracefully shutdown the app and materialize the RDD containing the state snapshots.
var listener = new Thread(new Listener(ssc, state))
listener.start()
ssc.start()
ssc.awaitTermination()
}
}
But when running this (so launching the app, waiting several minutes for some state information to build up, and then entering key 'D', I get the below. So I can't do anything 'new' with a dstream after quitting the ssc. I hoped to move from a DStream RDD to a regular RDD, quit the streaming context, and wrap up by saving the normal RDD. But don't know how. Hope someone can help!
Exception in thread "Thread-52" java.lang.IllegalStateException: Adding new inputs, transformations, and output operations after sta$
ting a context is not supported
at org.apache.spark.streaming.dstream.DStream.validateAtInit(DStream.scala:222)
at org.apache.spark.streaming.dstream.DStream.<init>(DStream.scala:64)
at org.apache.spark.streaming.dstream.ForEachDStream.<init>(ForEachDStream.scala:34)
at org.apache.spark.streaming.dstream.DStream.org$apache$spark$streaming$dstream$DStream$$foreachRDD(DStream.scala:687)
at org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$1.apply$mcV$sp(DStream.scala:661)
at org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$1.apply(DStream.scala:659)
at org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$1.apply(DStream.scala:659)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
at org.apache.spark.SparkContext.withScope(SparkContext.scala:714)
at org.apache.spark.streaming.StreamingContext.withScope(StreamingContext.scala:260)
at org.apache.spark.streaming.dstream.DStream.foreachRDD(DStream.scala:659)
at main.scala.feaUS.Listener.run(feaUS.scala:119)
at java.lang.Thread.run(Thread.java:745)
There are 2 main changes to the code which should make it work
1> Use the checkpointed directory to start the spark streaming context.
val ssc = StreamingContext.getOrCreate(checkpointDirectory,
() => createContext(checkpointDirectory));
where createContext method has the logic to create and define new streams and stores the check pointed date in checkpointDirectory.
2> The sql context needs to be constructed in a slightly different way.
val streamParsedRaw = kafkaStream
.map { case (k, v: String) => v } // key is empty, so get the value containing the json string.
.map(s => s.replaceAll("""(\"hotel_id\")\:\"([0-9]+)\"""", "\"hotel_id\":$2")) // some events contain the hotel_id in quotes, making it a string. remove these quotes.
.transform { rdd =>
val sqlContext = SQLContext.getOrCreate(rdd.sparkContext)
import sqlContext.implicits._
val df = sqlContext.read.schema(struct).json(rdd) // apply schema defined above and parse the json into a dataframe,
.selectExpr("__created_epoch__ AS created_epoch" // the parsed json dataframe needs a bit of type cleaning and name changing
I feel your pain! While checkpointing is useful, it does not actually work if the code changes, and we change the code frequently!
What we are doing is to save the state, as json, every cycle, to hbase. So, if snapshotStream is your stream with the state info, we simply save it, as json, to hbase each window. While expensive, it is the only way we can guarantee the state is available upon restart even if the code changes.
Upon startup we load it, deserialize it, and pass it to the stateSpec as the initial rdd.

using spark to read specific columns data from hbase

I have a table in HBase named as "orders" it has column family 'o' and columns as {id,fname,lname,email}
having row key as id. I am trying to get the value of fname and email only from hbase using spark. Currently what 'i am doing is given below
override def put(params: scala.collection.Map[String, Any]): Boolean = {
var sparkConfig = new SparkConf().setAppName("Connector")
var sc: SparkContext = new SparkContext(sparkConfig)
var hbaseConfig = HBaseConfiguration.create()
hbaseConfig.set("hbase.zookeeper.quorum", ZookeeperQourum)
hbaseConfig.set("hbase.zookeeper.property.clientPort", zookeeperPort)
hbaseConfig.set(TableInputFormat.INPUT_TABLE, schemdto.tableName);
hbaseConfig.set(TableInputFormat.SCAN_COLUMNS, "o:fname,o:email");
var hBaseRDD = sc.newAPIHadoopRDD(hbaseConfig, classOf[TableInputFormat],
classOf[org.apache.hadoop.hbase.io.ImmutableBytesWritable],
classOf[org.apache.hadoop.hbase.client.Result])
try {
hBaseRDD.map(tuple => tuple._2).map(result => result.raw())
.map(f => KeyValueToString(f)).saveAsTextFile(sink)
true
} catch {
case _: Exception => false
}
}
def KeyValueToString(keyValues: Array[KeyValue]): String = {
var it = keyValues.iterator
var res = new StringBuilder
while (it.hasNext) {
res.append( Bytes.toString(it.next.getValue()) + ",")
}
res.substring(0, res.length-1);
}
But nothing is returned and If I try to fetch only one column such as
hbaseConfig.set(TableInputFormat.SCAN_COLUMNS, "o:fname");
then it returns all the values of column fname
So my question is how to get multiple columns from hbase using spark
Any help will be appreciated.
List of columns to scan needs to be space-delimited, according to the documentation.
hbaseConfig.set(TableInputFormat.SCAN_COLUMNS, "o:fname o:email");