How can I Write Own Video Driver for My OS? - operating-system

While I am writing my own OS, this question comes to my mind!
Is it Possible to write own video drivers like VGA, VESA ( In BIOS ) and GOP, UGA ( In UEFI ) ,if yes then how?

Related

How to get Device Instance Path from Windows kernel driver?

Take a look at this example: a USB device in Windows 7 is reported to have Device instance path(DevinstPath) USB\VID_1EAB&PID_0501\7&25C389C1&0&1 and I know exactly that it corresponds to the so-called hardware-key(hwkey) in registry.
Now my question is: When my KMDF driver code has WDFDEVICE handle for that USB device, how can I know its DevinstPath?
I know I can
send a BusQueryDeviceID to achieve the so-called device-id USB\VID_1EAB&PID_0501;
send a BusQueryInstanceID to achieve the so-called instance-id 1 .
But I don't know how to get the so-called "instance-path". Could some kernel guru kindly tell me how I can get that?
MSDN doc seems really vague on this!
BTW: I also realize that user-layer function SetupDiGetDeviceInstanceId actually returns the DevinstPath -- although it is named "InstanceId".
Device instance path can be queried using DEVPKEY_Device_InstanceId, using either WdfDeviceAllocAndQueryPropertyEx or IoGetDevicePropertyData (passing the WDM physical device object)
Device Instance id is autoincrement sequence.
You can find HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Enum in registry;
Rules:NextPareneID.XXXXXXXX.N
XXXXXX use UUID Calculation crc32 values(test ok)
N is 1~9
Device Instance id format is N&PareneID&random's number&index
enter image description here

FTDI Get modem status values (DSR, DCD, CTS)

I'm working on a project where I'd like to be able to send a simple on/off signal back to the PC via one of the modem pins (DSR, DCD, CTS), separate from the standard serial communications.
I'm having trouble accessing these when connecting to the device with the standard VPC serial driver.
Sample Python using pySerial:
import serial
def main(argv):
watchPort(sys.argv[1])
def watchPort(portName):
ser = serial.Serial(portName)
while True:
print("DCD {0}, DSR {1}, CTS {2}".format(ser.cd, ser.dsr, ser.cts))
time.sleep(0.5)
if __name__ == "__main__":
main()
These values are always the same, no matter if the pins are connected HIGH or LOW. I've also tested with a couple terminal programs to verify (CoolTerm, SerialTerm).
I am, however, able to get these values via the D2XX drivers and related APIs, but I'd rather use the simpler serial device method, if possible. Is this not possible?
Why?
I'm setting up a multi-drop RS485 network and planning to use one of these lines as a common signal line that can be used to signal "ready", "error" and to prevent communication collisions.
It turns out that the problem was with the stock FTDI driver that comes with OS X. (see post) Updating to the latest VPC driver fixed it.

serial monitoring method to test communication via com ports without a serial communication device

I have a Verilog code simulated and synthesized on ISE design toolkit. I've got an FPGA spartan 6 device which is to be used for the implementation. But there is a problem with the device (probably a power issue) which makes the device unavailable in any of the COM ports when I connected it to my PC. So I want to check whether my Matlab code which I made for serial communication through the device does the desired job. So I need a method to test serial communication via any of the COM ports without connecting a serial com device to the PC. Is there any such method that I can Tx Rx serial data from Matlab to COM ports? Any software or any other method would be highly appreciated :)
I found a way to test Matlab serial communication using virtual serial ports.
Download "Freeware Virtual COM Ports Emulator" from: http://freevirtualserialports.com/
I installed it in Windows 10, and it's working (as trial).
Add a pair of two serial ports:
Execute the following Matlab code sample to verify it's working:
s3 = serial('COM3','BaudRate',115200);
s4 = serial('COM4','BaudRate',115200);
fopen(s3);
fopen(s4);
fwrite(s3, uint8([1, 2, 3, 4, 5]));
%fprintf(s3, '12345');
pause(0.1);
RxBuf = fread(s4, 5)
fclose(s3);
delete(s3);
clear s3
fclose(s4);
delete(s4);
clear s4
The output is:
RxBuf =
1
2
3
4
5
Bypassing the problem "it only stays for a single test session".
There is a problem when creating a pair of virtual ports using the software, it only stays for a single test session.
I guess it's a problem with the COM port emulation software.
The following solution, is not a good practice (and not a true solution).
Declare the serial object as global, keeping the object persistent.
Create the serial object only if it's not created.
Don't delete and don't clear the serial object.
See the following code sample:
global s3 s4
if isempty(s3)
s3 = serial('COM3','BaudRate',115200);
end
if isempty(s4)
s4 = serial('COM4','BaudRate',115200);
end
fopen(s3);
fopen(s4);
fwrite(s3, uint8([1, 2, 3, 4, 5]));
pause(0.1);
RxBuf = fread(s4, 5)
fclose(s3);
%delete(s3);
%clear s3
fclose(s4);
%delete(s4);
%clear s4
You can also look for a better virtual COM port software.
As Rotem suggested, if you need to communicate via serial line between 2 program of your PC you need a virtual COM port emulator.
It seems you are running on Windows OS so I would recommend a completely free emulator (not a trial one). For Windows I use com0com Null-modem emulator (from SourceForge).
In the example below I will show how to communicate with "another" device so Matlab will not handle both side of the communication. The other device will be simulated by a simple terminal. For windows I use RealTerm: Serial/TCP Terminal (also from SourceForge).
Setup:
Execute the setup of both program with all default options. by default com0com will create a virtual pair COM3/COM4 but if these port already exist on your system the program may assign other numbers. Check the numbers before you run the example. (it will also create a CNCA0/CNCB0 pair but you can ignore this one for now).
For RealTerm, once installed (don't forget to activate the server registration at the end of the setup, it should be ticked by default though), it will look like below. Keep all default options, just set the port number and the baud rate if they need to be changed.
Test MATLAB -> Terminal
You are ready to send Ascii characters or binary values from MATLAB to your device. The animation below shows you an example of both option:
you can click on the picture to see it full size. It is running in loop so you may want to wait until it restart from the beginning.
Test Terminal -> MATLAB
Below animation shows you how to test the communication in the other way:
Don't forget to tick [CR] [LF] on RealTerm when you send Ascii characters and want to use the '%s' format specifier on MATLAB, as it needs these characters to detect the end of the string.
Note:
If you have another terminal program that you are more used too, it
will work the same.
If the RealTerm option does not suit you, or if you want to handle
both sides of communication from Matlab, then you can use the code
provided by Rotem in his first answer. Just install com0com but
ignore all the RealTerm part.

Linux and reading and writing a general purpose 32 bit register

I am using embedded Linux for the NIOS II processor and device tree. The GPIO functionality provides the ability to read and or write a single bit at a time. I have some firmware and PIOS that I want to read or write atomically by setting or reading all 32 bits at one time. It seems like there would be a generic device driver that if the device tree was given the proper compatibility a driver would exist that would allow opening the device and then reading and writing the device. I have searched for this functionality and do not find a driver. One existing in a branch but was removed by Linus.
My question is what is the Linux device tree way to read and write a device that is a general purpose 32 bit register/pio?
Your answer is SCULL
Character Device Drivers
You will have to write a character device driver with file operations to open and close a device. Read, write, ioctl, and copy the contents of device.
static struct file_operations query_fops =
{
.owner = THIS_MODULE,
.open = my_open,
.release = my_close,
.ioctl = my_ioctl
};
Map the address using iomem and directly read and write to that address using rawread and rawwrite. Create and register a device as follows and then it can be accessed from userspace:
register_chrdev (0, DEVICE_NAME, & query_fops);
device_create (dev_class, NULL, MKDEV (dev_major, 0), NULL, DEVICE_NAME);
and then access it from userspace as follows:
fd = open("/dev/mydevice", O_RDWR);
and then you can play with GPIO from userspace using ioctl's:
ioctl(fd, SET_STATE);

Bluetooth low energy (BLE 112 ) Difference between BGAPI and BGScript

What is the Difference between BGAPI and BGScript ?
And if we write any code for BG profile than how can we burn it in BLE 112?
The BGAPI interface defines the protocol used to talk to the module over USB or serial link.
BGScript is something which runs on the module processor itself, when the USB or serial link is not used.
I have the dongle, BLED112, which is the same thing as BLE112 with a USB connector on it, and the code is "burned" to it using standard USB DFU interface.
The downloading of the code to BLE112 can be done using several methods:
(1) Bring out the DD, DC debug interface pins from your module and use the CC-Debugger (digikey part 296-30207-ND, $55). This works every time. If you have the DKBLE112 kit, the CC-Debugger fits on the 10-pin .050 connector in lower right corner. You can "burn" any firmware and any stack this way. Works awesome.
(2) Hope that the current firmware on the CC2540 has serial bootloader, and load the new firmware (hopefully also containing serial bootloader) using UART. TI has the tools, but it sure seems quite convoluted to me, and I did not try it.