Kafka Brokers don't balance partitions after a broker goes down - apache-kafka

We have a 3-broker 3-zookeeper cluster and we've taken down a broker. We have total of 180 partitions, each of the topics have 2 replicas. When a node is taken down, there are 75 under replicated partitions and it stays that way and it doesn't look like anything happens. When I start up the broker I took down, the partitions are quickly picked up by it and it works ok.
The machines are quite big (30gb ram, fast disks) and all the data is 10gb on each broker so I have no idea why it wouldn't move the partitions quickly from a node that is down to a node that is still up, seems like it's not aware that the node was taken down.
Any tips? How can I monitor the recovery process after a node is taken down?
Kafka version - 2.6.0

This is by design, no data is moved off the broker until you manually move partitions off of it first using kafka-reassign-partitions
Similarly, you'd need to do this if you're trying to fully remove a node from the cluster, which is effectively the same behavior of having it crash and never come back

Related

Kafka - broker partitions not in-sync after restart

We use 3 node kafka clusters running 2.7.0 with quite high number of topics and partitions. Almost all the topics have only 1 partition and replication factor of 3 so that gives us roughly:
topics: 7325
partitions total in cluster (including replica): 22110
Brokers are relatively small with
6vcpu
16gb memory
500GB in /var/lib/kafka occupied by partitions data
As you can imagine because we have 3 brokers and replication factor 3 the data is very evenly spread across brokers. Each broker leads very similar (same) amount of partitions and the number of partitions per broker is equal. Under normal circumstances.
Before doing rolling restart yesterday everything was in-sync. We stopped the process and started it again after 1 minute. It took some 10minutes to get synchronized with Zookeeper and start listening on port.
After saing 'Kafka server started'. Nothing is happening. There is no CPU, memory or disk activity. The partition data is visible on data disk. There are no messages in log for more than 1 day now since process booted up.
We've tried restarting zookeeper cluster (one by one). We've tried restart of broker again. Now it's been 24 hours since last restart and still not change.
Broker itself is reporting it leads 0 partitions. Leadership for all the partitions moved to other brokers and they are reporting that everything located in this broker is not in sync.
I'm aware the number of partitions per broker is far exceeding the recommendation but I'm still confused by lack of any activity or log messages. Any ideas what should be checked further? It looks like something is stuck somewhere. I checked the kafka ACLs and there are no block messages related to broker username.
I tried another restart with DEBUG mode and it seems there is some problem with metadata. These two messages are constantly repeating:
[2022-05-13 16:33:25,688] DEBUG [broker-1-to-controller-send-thread]: Controller isn't cached, looking for local metadata changes (kafka.server.BrokerToControllerRequestThread)
[2022-05-13 16:33:25,688] DEBUG [broker-1-to-controller-send-thread]: No controller defined in metadata cache, retrying after backoff (kafka.server.BrokerToControllerRequestThread)
With kcat it's also impossible to fetch metadata about topics (meaning if I specify this broker as bootstrap server).

Handle kafka broker full disk space

We have setup a zookeeper quorum (3 nodes) and 3 kafka brokers. The producers can't able to send record to kafka --- data loss. During investigation, we (can still) SSH to that broker and observed that the broker disk is full. We deleted topic logs to clear some disk space and the broker function as expected again.
Given that we can still SSH to that broker, (we can't see the logs right now) but I assume that zookeeper can hear the heartbeat of that broker and didn't consider it down? What is the best practice to handle such events?
The best practice is to avoid this from happening!
You need to monitor the disk usage of your brokers and have alerts in advance in case available disk space runs low.
You need to put retention limits on your topics to ensure data is deleted regularly.
You can also use Topic Policies (see create.topic.policy.class.name) to control how much retention time/size is allowed when creating/updating topics to ensure topics can't fill your disk.
The recovery steps you did are ok but you really don't want to fill the disks to keep your cluster availability high.

Kafka broker taking too long to come up

Recently, one of our Kafka broker (out of 5) got shut down incorrectly. Now that we are starting it up again, there are a lot of warning messages about corrupted index files and the broker is still starting up even after 24 hours. There is over 400 GB of data in this broker.
Although the rest of the brokers are up and running but some of the partitions are showing -1 as their leader and the bad broker as the only ISR. I am not seeing other Replicas to be appointed as new leaders, maybe because the bad broker is the only one in sync for those partitions.
Broker Properties:
Replication Factor: 3
Min In Sync Replicas: 1
I am not sure how to handle this. Should I wait for the broker to fix everything itself? is it normal to take so much time?
Is there anything else I can do? Please help.
After an unclean shutdown, a broker can take a while to restart as it has to do log recovery.
By default, Kafka only uses a single thread per log directory to perform this recovery, so if you have thousands of partitions it can take hours to complete.
To speed that up, it's recommended to bump num.recovery.threads.per.data.dir. You can set it to the number of CPU cores.

Fixing under replicated partitions in kafka

In our production environment, we often see that the partitions go under-replicated while consuming the messages from the topics. We are using Kafka 0.11. From the documentation what is understand is
Configuration parameter replica.lag.max.messages was removed. Partition leaders will no longer consider the number of lagging messages when deciding which replicas are in sync.
Configuration parameter replica.lag.time.max.ms now refers not just to the time passed since last fetch request from the replica, but also to time since the replica last caught up. Replicas that are still fetching messages from leaders but did not catch up to the latest messages in replica.lag.time.max.ms will be considered out of sync.
How do we fix this issue? What are the different reasons for replicas go out of sync? In our scenario, we have all the Kafka brokers in the single RACK of the blade servers and all are using the same network with 10GBPS Ethernet(Simplex). I do not see any reason for the replicas to go out of sync due to the network.
We faced the same issue:
Solution was:
Restart the Zookeeper leader.
Restart the broker\brokers that are not replicating some of the partitions.
No data lose.
The issue is due to a faulty state in ZK, there was an opened issue on ZK for this, don't remember the number.
I faced the same issue on Kafka 2.0,
On restart Kafka controller node everything caught-up on the replicas.
But still looking for the reasons why few partitions are under-replicated whereas the other partitions on the same nodes for the same topic works good, and this issue i see on a random partitions.
Do NOT run reassignment for all topics together, consider running it for small portions.
Find the topic that has under-replicated partitions and where reassignment process can't be completed.
Set unclean.leader.election.enable to true for this topic.
Find under-replicated partition that stuck for this topic. Check its leader ID.
Stop the broker (just the service, not the instance).
Execute Preferred Replica Election (in yahoo/kafka-manager or manually).
Start the broker back.
Repeat for the rest of topics that have the same problem.
Also I tried this advice, it didn't help me: https://stackoverflow.com/a/51063607/1929406

Maximum value for zookeeper.connection.timeout.ms

Right now we are running kafka in AWS EC2 servers and zookeeper is also running on separate EC2 instances.
We have created a service (system units ) for kafka and zookeeper to make sure that they are started in case the server gets rebooted.
The problem is sometimes zookeeper severs are little late in starting and kafka brokers by that time getting terminated.
So to deal with this issue we are planning to increase the zookeeper.connection.timeout.ms to some high number like 10 mins, at the broker side. Is this a good approach ?
Are there any size effect of increasing the zookeeper.connection.timeout.ms timeout in zookeeper ?
Increasing zookeeper.connection.timeout.ms may or may not handle your problem in hand but there is a possibility that it will take longer time to detect a broker soft failure.
Couple of things you can do:
1) You must alter the System to launch the kafka to delay by 10 mins (the time you wanted to put in zookeper timeout).
2) We are using HDP cluster which automatically takes care of such scenarios.
Here is an explanation from Kafka FAQs:
During a broker soft failure, e.g., a long GC, its session on ZooKeeper may timeout and hence be treated as failed. Upon detecting this situation, Kafka will migrate all the partition leaderships it currently hosts to other replicas. And once the broker resumes from the soft failure, it can only act as the follower replica of the partitions it originally leads.
To move the leadership back to the brokers, one can use the preferred-leader-election tool here. Also, in 0.8.2 a new feature will be added which periodically trigger this functionality (details here).
To reduce Zookeeper session expiration, either tune the GC or increase zookeeper.session.timeout.ms in the broker config.
https://cwiki.apache.org/confluence/display/KAFKA/FAQ
Hope this helps