Octave/Matlab filter vs fftfilter - matlab

So I am applying a noise reduction algorithm for a specific signal using octave and this is the code as it goes.
clc;
clear;
pkg load signal
x = csvread("Ascan.csv");
tres = 50 /length(x);
t = [0:tres:50-tres];
MHz = 10;
fres = 1/tres;
f1 = 0.5*MHz;
f2 = 6*MHz;
numberofOverlaps = 50;
freqChange = (f2-f1)/numberofOverlaps;
count =0;
fs = 50 * MHz;
Rpass = 1;
Rstop = 26;
fp1 = f1:freqChange:f2-freqChange;
fp2 = f1+2*freqChange:freqChange:f2+freqChange;
for i = 1:numberofOverlaps
fs1 = fp1(i) - 1*MHz;
fs2 = fp2(i) + 1*MHz;
if fs1<0
fs1 =0;
endif
fpass{i} = [fp1(i) fp2(i)];
fstop{i} = [fs1 fs2];
Wpass = 2 /fs * fpass{i};
Wstop = 2/fs * fstop{i};
[n,Wp,Ws] = buttord(Wpass, Wstop,Rpass,Rstop);
[b,a] = butter(n,Wp);
filtered{i} = filter(b,a,x);
fftfiltered{i} =fftfilt(b,x);
end
for L = 1:length(x)
for k = 1:numberofOverlaps
m1(k)= filtered{k}(L);
m2(k)= fftfiltered{k}(L);
endfor
minimalistic(L) = min(m1(k));
minimal(L) = min(m2(k));
endfor
figure(1);
subplot(1,3,1);
plot(t,x);
title("Unfiltered");
xlabel('Time in us');
ylabel('Amplitude');
subplot(1,3,2);
plot(t,minimalistic);
title("filtered using filter function");
xlabel('Time in us');
ylabel('Amplitude');
subplot(1,3,3);
plot(t,minimal);
title("filtered using fftFilt function");
xlabel('Time in us');
ylabel('Amplitude');
In the following code, I am getting this as the output
The signal in column 1 is the input signal and the signal in column 3 is the desired output, but this uses the function fftfilt(b,x) and why does it not work the same way with filter(b,a,x) whose output is shown in column 2.

Related

Why do i get "wrong number of output arguments" error when converting from Matlab to Scilab?

I'm trying to covert this Matlab code to Scilab, but I have some problems.
N = 101;
L = 4*pi;
x = linspace(0,L,N);
% It has three data set; 1: past, 2: current, 3: future.
u = zeros(N,3);
s = 0.5;
% Gaussian Pulse
y = 2*exp(-(x-L/2).^2);
u(:,1) = y;
u(:,2) = y;
% Plot the initial condition.
handle_line = plot(x,u(:,2),'LineWidth',2);
axis([0,L,-2,2]);
xlabel('x'); ylabel('u');
title('Wave equation');
% Dirichet Boundary conditions
u(1,:) = 0;
u(end,:) = 0;
filename = 'wave.gif';
for ii=1:100
disp(['at ii= ', num2str(ii)]);
u(2:end-1,3) = s*(u(3:end,2)+u(1:end-2,2)) ...
+ 2*(1-s)*u(2:end-1,2) ...
- u(2:end-1,1);
u(:,1) = u(:,2);
u(:,2) = u(:,3);
handle_line.YData = u(:,2);
drawnow;
frame = getframe(gcf);
im = frame2im(frame);
[A,map] = rgb2ind(im,256);
if ii==1
imwrite(A,map,filename,'gif','LoopCount',Inf,'DelayTime',0.05);
else
imwrite(A,map,filename,'gif','WriteMode','append','DelayTime',0.05);
end
end
I get an error for this line:
handle_line = plot(x,u(:,2),'LineWidth',2);
Error states: Wrong number of output arguments
What should i change to fix it?
The line
axis([0,L,-2,2]);
has to be translated in Scilab to
set(gca(),"data_bounds",[0,L,-2,2]);
Try this out:
N = 101;
L = 4*pi;
x = linspace(0,L,N);
% It has three data set; 1: past, 2: current, 3: future.
u = zeros(N,3);
s = 0.5;
% Gaussian Pulse
y = 2*exp(-(x-L/2).^2);
u(:,1) = y;
u(:,2) = y;
% Define a standard plot range for x and y
x_range=[min(x) max(x)];
y_range=[-max(y) max(y)];
% Plot the initial condition.
plot(x,u(:,2),'LineWidth',2);
axis([0,L,-2,2]);
xlabel('x'); ylabel('u');
title('Wave equation');
% Dirichet Boundary conditions
u(1,:) = 0;
u(end,:) = 0;
filename = 'wave.gif';
for ii=1:100
disp(['at ii= ', num2str(ii)]);
u(2:end-1,3) = s*(u(3:end,2)+u(1:end-2,2)) ...
+ 2*(1-s)*u(2:end-1,2) ...
- u(2:end-1,1);
u(:,1) = u(:,2);
u(:,2) = u(:,3);
plot(x,u(:,2),'LineWidth',2);
axis([x_range y_range]);
frame = getframe(gcf);
im = frame2im(frame);
[A,map] = rgb2ind(im,256);
if ii==1
imwrite(A,map,filename,'gif','LoopCount',Inf,'DelayTime',0.05);
else
imwrite(A,map,filename,'gif','WriteMode','append','DelayTime',0.05);
end
end
I removed the output and added axis limit independently.

Output of k3_1 is capped at -3.1445e+24

I'm solving a system of ODEs using RK4. I'm generating a straight line plot that seems to be due to the fact that k3_1 is capped at -3.1445e+24. I don't understand why it is capped.
function RK4system_MNModel()
parsec = 3.08*10^18;
r_1 = 8.5*1000.0*parsec; % in cm
z_1 = 0.0; % in cm also
theta_1 = 0.0;
grav = 6.6720*10^-8;
amsun = 1.989*10^33; % in grams
amg = 1.5d11*amsun; % in grams
gm = grav*amg; % constant
q = 0.9; % axial ratio
u_1 = 130.0; % in cm/sec
w_1 = 95*10^4.0; % in cm/sec
v = 180*10^4.0; % in cm/sec
vcirc = sqrt(gm/r_1); % circular speed (constant)
nsteps = 50000;
deltat = 5.0*10^11; % in seconds
angmom = r_1*v; % these are the same
angmom2 = angmom^2.0;
e = -gm/r_1+u_1*u_1/2.0+angmom2/(2.0*r_1*r_1);
time=0.0;
for i=1:nsteps
k3_1 = deltat*u_1 %%%%% THIS LINE
k4_1 = deltat*(-gm*r_1/((r_1^2.0+(1+sqrt(1+z_1^2.0))^2.0)^1.5) + angmom2/(r_1^3.0)); % u'=-dphi_dr+lz^2/(r^3.0) with lz=vi*ri this gives deltau
k5_1 = deltat*(angmom/(r_1^2.0)); % theta'=lz/r^2 this gives deltatheta
k6_1 = deltat*w_1;
k7_1 = deltat*(-gm*z_1*(1+sqrt(1+z_1^2.0))/(sqrt(1+z_1^2.0)*(r_1^2.0+(1+sqrt(1+z_1^2.0))^2.0)^1.5));
r_2 = r_1+k3_1/2.0;
u_2 = u_1+k4_1/2.0;
theta_2 = theta_1+k5_1/2.0;
z_2 = z_1 + k6_1/2.0;
w_2 = w_1 + k7_1/2.0;
k3_2 = deltat*u_2;
k4_2 = deltat*(-gm*r_2/((r_2^2.0+(1+sqrt(1+z_2^2.0))^2.0)^1.5)+angmom2/(r_2^3.0));
k5_2 = deltat*(angmom/(r_2^2.0)); % theta'=lz/r^2 =====> deltatheta
k6_2 = deltat*w_2;
k7_2 = deltat*(-gm*z_2*(1+sqrt(1+z_2^2.0))/(sqrt(1+z_2^2.0)*(r_2^2.0+(1+sqrt(1+z_2^2.0))^2.0)^1.5));
r_3 = r_1+k3_2/2.0;
u_3 = u_1+k4_2/2.0;
theta_3 = theta_1+k5_2/2.0;
z_3 = z_1 + k6_2/2.0;
w_3 = w_1 + k7_2/2.0;
k3_3 = deltat*u_3; % r'=u
k4_3 = deltat*(-gm*r_3/((r_3^2.0+(1+sqrt(1+z_3^2.0))^2.0)^1.5)+angmom2/(r_3^3.0));% u'=-dphi_dr+lz^2/(r^3.0)
k5_3 = deltat*(angmom/(r_3^2.0)); % theta'=lz/r^2
k6_3 = deltat*w_3;
k7_3 = deltat*(-gm*z_3*(1+sqrt(1+z_3^2.0))/(sqrt(1+z_3^2.0)*(r_3^2.0+(1+sqrt(1+z_3^2.0))^2.0)^1.5));
r_4 = r_1+k3_2;
u_4 = u_1+k4_2;
theta_4 = theta_1+k5_2;
z_4 = z_1 + k6_2;
w_4 = w_1 + k7_2;
k3_4 = deltat*u_4; % r'=u
k4_4 = deltat*(-gm*r_4/((r_4^2.0+(1+sqrt(1+z_4^2.0))^2.0)^1.5)+angmom2/(r_4^3.0)); % u'=-dphi_dr+lz^2/(r^3.0)
k5_4 = deltat*(angmom/(r_4^2.0)); % theta'=lz/r^2
k6_4 = deltat*w_4;
k7_4 = deltat*(-gm*z_4*(1+sqrt(1+z_4^2.0))/(sqrt(1+z_4^2.0)*(r_4^2.0+(1+sqrt(1+z_4^2.0))^2.0)^1.5));
r_1 = r_1+(k3_1+2.0*k3_2+2.0*k3_3+k3_4)/6.0; % New value of R for next step
u_1 = u_1+(k4_1+2.0*k4_2+2.0*k4_3+k4_4)/6.0; % New value of U for next step
theta_1 = theta_1+(k5_1+2.0*k5_2+2.0*k5_3+k5_4)/6.0; % New value of theta
z_1 = z_1+(k6_1+2.0*k6_2+2.0*k6_3+k6_4)/6.0;
w_1 = w_1+(k7_1+2.0*k7_2+2.0*k7_3+k7_4)/6.0;
e = -gm/r_1+u_1*u_1/2.0+angmom2/(2.0*r_1*r_1); % energy
ecc = (1.0+(2.0*e*angmom2)/(gm^2.0))^0.5; % eccentricity
x(i) = r_1*cos(theta_1)/(1000.0*parsec); % X for plotting orbit
y(i) = r_1*sin(theta_1)/(1000.0*parsec); % Y for plotting orbit
time = time+deltat;
r(i) = r_1;
z(i) = z_1;
time1(i)= time;
end
Note that the anomally occurs on the indicated line.
It's not k3_1 that's capped, it's the calculation of u_1 that returns a value of -3.1445e+24 / deltat (deltat is constant).
u_1 is calculated in the line:
u_1 = u_1+(k4_1+2.0*k4_2+2.0*k4_3+k4_4)/6.0;
After the first iteration, this returns:
u_1(1) = 6.500e+13 % Hard coded before the loop
u_1(2) = -1.432966614767040e+04 % Calculated using the equation above
u_1(3) = -2.878934017859105e+04 % Calculated using the equation above
u_1(4) = -4.324903004768405e+04
Based on the equation u_1(n+1) = u_1(n) + du it looks like du represents a relatively small difference. The difference between the two first values is very large, so I'm assuming it is this calculation that's incorrect.
If you find that that calculation is correct, then your error is in one of these lines:
k4_1 = deltat*(-gm*r_1/((r_1^2.0+(1+sqrt(1+z_1^2.0))^2.0)^1.5)+angmom2/(r_1^3.0)); % u'=-dphi_dr+lz^2/(r^3.0) with lz=vi*ri this gives delta
k4_2 = deltat*(-gm*r_2/((r_2^2.0+(1+sqrt(1+z_2^2.0))^2.0)^1.5)+angmom2/(r_2^3.0));
k4_3 = deltat*(-gm*r_3/((r_3^2.0+(1+sqrt(1+z_3^2.0))^2.0)^1.5)+angmom2/(r_3^3.0));% u'=-dphi_dr+lz^2/(r^3.0)
k4_4 = deltat*(-gm*r_4/((r_4^2.0+(1+sqrt(1+z_4^2.0))^2.0)^1.5)+angmom2/(r_4^3.0)); % u'=-dphi_dr+lz^2/(r^3.0)

How to use the new functions of PDE toolbox in image processing (Matlab R2015a)

I want to use the line new command of PDE toolbox as Matlab R2015 to restore a noisy image with gaussian noise.
The PDE is:
∇.(( ∇u)/(√(1+|∇u|2))) +(f2)/(u2) = 1 in Ω (∂u)/(∂n)=0 in ∂Ω
Where f is the noisy image and u the restored image.
I tried the following code:
clear
close all
clc
img = 'AA.jpg';
mInputImage = double(imread(img));
mInputImage = rgb2gray(mInputImage);
[numRows, numCols] = size(mInputImage);
Var = 0.04;
Mean = 0;
mInputImageNoisy = imnoise((mInputImage(:,:,1)),'gaussian',Mean, Var);
% reshape the input and noisy images to vectors
mInputImageVector = reshape(mInputImage,numRows*numCols,1);
mInputImageNoisyVector = reshape(mInputImageNoisy,numRows*numCols,1);
Residu1 = norm(mInputImageVector-mInputImageNoisyVector)/norm(mInputImageVector)
RegularisationCoefficient = 0.7*ones((numRows-1)*(numCols-1),1);
mOutputImageVector = mInputImageNoisyVector;
%a = (mInputImageNoisyVector.^2) ./ mOutputImageVector.^3;
f = 1;
rtol = 1e-1;
c = '1./sqrt(1+ux.^2+uy.^2)';
% Create a PDE Model with a single dependent variable
numberOfPDE = 1;
pdem = createpde(numberOfPDE);
g = #squareg;
geometryFromEdges(pdem,g);
% Plot the geometry and display the edge labels for use in the boundary
% condition definition.
figure;
pdegplot(pdem, 'edgeLabels', 'on');
%axis([0 numRows 0 numCols]);
axis([-2 2 -2 2]);
title 'Geometry With Edge Labels Displayed'
b2 = applyBoundaryCondition(pdem,'Edge',[1 2 3 4], 'u', 0);
[p,e,t] = poimesh(g,numRows, numCols);
numCols
pdemesh(p,e,t);
axis equal
for iter = 1: numRows*numRows,
mOutputImageVector(iter) = pdenonlin(pdem,c,...
(mInputImageNoisyVector(iter).^2) ./ mOutputImageVector(iter).^3,...
f,'tol',rtol);
SaveImageVector(iter) = mOutputImageVector;
end
mOutputImage = reshape(SaveImageVector,numRows,numRows);
mOutputImage = uint8(mOutputImage);
figure()
imshow(mOutputImage)

Solving ring laser equations in MATLAB using ode

I have written a Matlab code which is a simulation of NOT gate implementation using ring lasers. Si variable is input in my code. But my code works only for Si = 0. for any other non zero value it doesn't show output.
%-----------Rate Equation MATLAB code ---------
function dydt = requations(t,y)
dydt = zeros(size(y));
%prompt = 'Sinput???';
%Si = input(prompt);
Si = 0; %MY INPUT
q = 1.6e-19; % charge of electron
tau_e = 1e-9; % carrier lifetime
No = 3.3e18; % # No of carriers at transparency
a = 1e-15; % Linear gain coefficient
Vg = 7.5e9; % group velocity
Vp = 3e-11; %Photon reservoir volume
V = 1e-11; %Carrier reservoir Volume
tau_p = 1.7e-12; % photon lifetime
beta = 1e-5; % spontateous emission coefficient
eps = 7.5e-17; % Nonlinear gain suppression coefficient
Ni = 0.8; %Internal quantum efficiency
w = 2*pi*10e5;
Io = 10e-3;
%I = Io*sin(w*t);
I = 2.5*Io; %for test purposes
tp = 1/tau_p;
te = 1/tau_e;
Aint = 6; %Internal losses inside cavity waveguides
%G = ((a/Vp)* (N-(V*No)))/(1-eps*(Sc + Scc));
alpha = -2; %alpha factor
L = 76e-4 ;%size of the ring
wcb = 2*pi*70;
%R = 0.25;
Wcb = wcb*1000000;
%r = 1/R;
tpcw = Vg*(Aint + ((1/L)*log(4)));
Tpcw = 1/tpcw;
%------Rate equations-------
N = y(1);
Sc = y(2); %Clock wise photon number
yc = y(3);
Scc = y(4); %anti clockwise photon number
ycc = y(5);
G = ((a/Vp)* (N-(V*No)))/(1-eps*(Sc + Scc));
dydt(1) = (Ni*I)/q - y(1)*te - Vg*G*(y(2) + y(4)); %dN/dt
dydt(2) = (Vg*G-Tpcw)*y(2) + beta*y(1)*te; %dSc/dt
dydt(3) = -(alpha/2)*(Vg*G-Tpcw); %dyc/dt
dydt(4) = (Vg*G-Tpcw)*y(4) + beta*y(1)*te + ((2*Vg)/L)*cos(y(5))*(sqrt(Si*y(4))); %dScc/dt
dydt(5) = -Wcb - ((alpha/2)*(Vg*G-Tpcw)) - ((Vg/L)*sin(y(5))*(sqrt(Si/y(4)))); %dycc/dt
Below is the Ode file
%------Rate equations for requation file------
format bank;
close all;
clear all;
clc;
%time interval
ti=0;
tf=200;
tspan=[ti tf];
x0 = [3.75e7, 2.25e6, 0, 2.25e6, 0]; %initial vectors
%options= odeset('RelTol',100, 'AbsTol',[3.75e7, 2.25e6]);
[t,y]= ode23t(#requations,tspan,x0);
%Plotting the graphs:
figure
subplot(5,1,1), plot(t,y(:,1),'r'),grid on;
title('Laserrate equations'),ylabel('N');
subplot(5,1,2), plot(t,y(:,2),'b'),grid on;
ylabel('Scw'); xlabel('t');
subplot(5,1,3), plot(t,y(:,3),'g'),grid on;
ylabel('ycw');xlabel('t');
subplot(5,1,4), plot(t,y(:,3),'g'),grid on;
ylabel('Sccw');xlabel('t');
subplot(5,1,5), plot(t,y(:,3),'g'),grid on;
ylabel('yccw');xlabel('t');

MATLAB: One Step Ahead Neural Network Timeseries Forecast

Intro: I'm using MATLAB's Neural Network Toolbox in an attempt to forecast time series one step into the future. Currently I'm just trying to forecast a simple sinusoidal function, but hopefully I will be able to move on to something a bit more complex after I obtain satisfactory results.
Problem: Everything seems to work fine, however the predicted forecast tends to be lagged by one period. Neural network forecasting isn't much use if it just outputs the series delayed by one unit of time, right?
Code:
t = -50:0.2:100;
noise = rand(1,length(t));
y = sin(t)+1/2*sin(t+pi/3);
split = floor(0.9*length(t));
forperiod = length(t)-split;
numinputs = 5;
forecasted = [];
msg = '';
for j = 1:forperiod
fprintf(repmat('\b',1,numel(msg)));
msg = sprintf('forecasting iteration %g/%g...\n',j,forperiod);
fprintf('%s',msg);
estdata = y(1:split+j-1);
estdatalen = size(estdata,2);
signal = estdata;
last = signal(end);
[signal,low,high] = preprocess(signal'); % pre-process
signal = signal';
inputs = signal(rowshiftmat(length(signal),numinputs));
targets = signal(numinputs+1:end);
%% NARNET METHOD
feedbackDelays = 1:4;
hiddenLayerSize = 10;
net = narnet(feedbackDelays,[hiddenLayerSize hiddenLayerSize]);
net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'};
signalcells = mat2cell(signal,[1],ones(1,length(signal)));
[inputs,inputStates,layerStates,targets] = preparets(net,{},{},signalcells);
net.trainParam.showWindow = false;
net.trainparam.showCommandLine = false;
net.trainFcn = 'trainlm'; % Levenberg-Marquardt
net.performFcn = 'mse'; % Mean squared error
[net,tr] = train(net,inputs,targets,inputStates,layerStates);
next = net(inputs(end),inputStates,layerStates);
next = postprocess(next{1}, low, high); % post-process
next = (next+1)*last;
forecasted = [forecasted next];
end
figure(1);
plot(1:forperiod, forecasted, 'b', 1:forperiod, y(end-forperiod+1:end), 'r');
grid on;
Note:
The function 'preprocess' simply converts the data into logged % differences and 'postprocess' converts the logged % differences back for plotting. (Check EDIT for preprocess and postprocess code)
Results:
BLUE: Forecasted Values
RED: Actual Values
Can anyone tell me what I'm doing wrong here? Or perhaps recommend another method to achieve the desired results (lagless prediction of sinusoidal function, and eventually more chaotic timeseries)? Your help is very much appreciated.
EDIT:
It's been a few days now and I hope everyone has enjoyed their weekend. Since no solutions have emerged I've decided to post the code for the helper functions 'postprocess.m', 'preprocess.m', and their helper function 'normalize.m'. Maybe this will help get the ball rollin.
postprocess.m:
function data = postprocess(x, low, high)
% denormalize
logdata = (x+1)/2*(high-low)+low;
% inverse log data
sign = logdata./abs(logdata);
data = sign.*(exp(abs(logdata))-1);
end
preprocess.m:
function [y, low, high] = preprocess(x)
% differencing
diffs = diff(x);
% calc % changes
chngs = diffs./x(1:end-1,:);
% log data
sign = chngs./abs(chngs);
logdata = sign.*log(abs(chngs)+1);
% normalize logrets
high = max(max(logdata));
low = min(min(logdata));
y=[];
for i = 1:size(logdata,2)
y = [y normalize(logdata(:,i), -1, 1)];
end
end
normalize.m:
function Y = normalize(X,low,high)
%NORMALIZE Linear normalization of X between low and high values.
if length(X) <= 1
error('Length of X input vector must be greater than 1.');
end
mi = min(X);
ma = max(X);
Y = (X-mi)/(ma-mi)*(high-low)+low;
end
I didn't check you code, but made a similar test to predict sin() with NN. The result seems reasonable, without a lag. I think, your bug is somewhere in synchronization of predicted values with actual values.
Here is the code:
%% init & params
t = (-50 : 0.2 : 100)';
y = sin(t) + 0.5 * sin(t + pi / 3);
sigma = 0.2;
n_lags = 12;
hidden_layer_size = 15;
%% create net
net = fitnet(hidden_layer_size);
%% train
noise = sigma * randn(size(t));
y_train = y + noise;
out = circshift(y_train, -1);
out(end) = nan;
in = lagged_input(y_train, n_lags);
net = train(net, in', out');
%% test
noise = sigma * randn(size(t)); % new noise
y_test = y + noise;
in_test = lagged_input(y_test, n_lags);
out_test = net(in_test')';
y_test_predicted = circshift(out_test, 1); % sync with actual value
y_test_predicted(1) = nan;
%% plot
figure,
plot(t, [y, y_test, y_test_predicted], 'linewidth', 2);
grid minor; legend('orig', 'noised', 'predicted')
and the lagged_input() function:
function in = lagged_input(in, n_lags)
for k = 2 : n_lags
in = cat(2, in, circshift(in(:, end), 1));
in(1, k) = nan;
end
end