We have a Locust load/performance test running (in a docker-compose setup).
It now runs on our build-server.
Ideally we would like the build-job to fail if certain requirements are not met.
For example require a certain average response time, or a minimum number of requests within a given timeout.
The expections/requirements must be compared with the aggregated data. So not in the individual (python) test methods.
One option can be to parse the generated reports, but I imagine locust has built-in support for the feature I'm thinking of.
Have a look at locust-plugins, specifically the custom command line options like --check-rps, --check-fail-ratio and --check-avg-response-time
https://github.com/SvenskaSpel/locust-plugins/blob/master/examples/cmd_line_examples.sh
For the purpose of automated KPI validation, you could create a custom plugin using locust’s event hooks and its inner statistics. The overall plugin design is pretty simple:
Register quitting event
Get all statistics and serialize them
Calculate missing metrics (RPS, percentiles, …)
Check provided KPI definition
Validate provided KPI agains actual measurements
The whole KPI plugin code looks like this:
import logging
from enum import Enum
from typing import List
import locust.env
from locust.stats import calculate_response_time_percentile
class Metric(Enum):
EROR_RATE = 'error_rate'
PERCENTILE_90 = 'percentile_90'
RPS = 'rps'
#staticmethod
def has_value(item):
return item in [v.value for v in Metric.__members__.values()]
class KpiPluigin:
def __init__(
self,
env: locust.env.Environment,
kpis: List,
):
self.env = env
self.kpis = kpis
self.errors = []
self._validate_kpis()
events = self.env.events
events.quitting.add_listener(self.quitting) # pyre-ignore
def quitting(self, environment):
serialized_stats = self.serialize_stats(self.env.stats)
updated_stats = self._update_data(serialized_stats)
self._kpi_check(updated_stats)
self._interpret_errors()
def serialize_stats(self, stats):
return [stats.entries[key].serialize() for key in stats.entries.keys() if
not (stats.entries[key].num_requests == 0 and stats.entries[key].num_failures == 0)]
def _update_data(self, stats):
for stat in stats:
stat['error_rate'] = self._calculate_fail_rate(stat)
stat['percentile_90'] = self._calculate_percentile(stat, 0.90)
stat['rps'] = self._calculate_rps(stat)
return stats
def _calculate_rps(self, stat):
rps = stat['num_reqs_per_sec']
num_of_measurements = len(rps)
return sum(rps.values()) / num_of_measurements
def _calculate_fail_rate(self, stat):
num_failures = stat['num_failures']
num_requests = stat["num_requests"]
return (num_failures / num_requests) * 100
def _calculate_percentile(self, stat, percentile):
response_times = stat['response_times']
num_requests = stat['num_requests']
return calculate_response_time_percentile(response_times, num_requests, percentile)
def _kpi_check(self, stats):
if len(stats) == 0:
return
for kpi in self.kpis:
name = list(kpi.keys())[0]
stat = next(stat for stat in stats if stat["name"] == name)
if stat:
kpi_settings = kpi[list(kpi.keys())[0]]
for kpi_setting in kpi_settings:
self._metrics_check(kpi_setting, stat)
def _metrics_check(self, kpi_setting, stat):
(metric, value) = kpi_setting
name = stat["name"]
if metric == Metric.EROR_RATE.value:
error_rate = stat['error_rate']
error_rate <= value or self._log_error(error_rate, kpi_setting, name)
if metric == Metric.PERCENTILE_90.value:
percentile = stat['percentile_90']
percentile <= value or self._log_error(percentile, kpi_setting, name)
if metric == Metric.RPS.value:
rps = stat['rps']
rps >= value or self._log_error(rps, kpi_setting, name)
def _log_error(self, stat_value, kpi_settings, name):
(metric, value) = kpi_settings
self.errors.append(
f"{metric} for '{name}' is {stat_value}, but expected it to be better than {value}") # noqa: E501
def _interpret_errors(self):
if len(self.errors) == 0:
logging.info('All KPIs are good!')
else:
for error in self.errors:
logging.error(f"SLA failed: \n {error}")
self.env.process_exit_code = 1
def _validate_kpis(self):
for kpi in self.kpis:
kpi_keys = list(kpi.keys())
if len(kpi_keys) > 1:
raise Exception("Every dict must contain definition for only one endpoint")
kpi_settings = kpi[kpi_keys[0]]
if len(kpi_settings) == 0:
raise Exception(f"No KPI defined for endpoint {kpi_keys[0]}")
for kpi_setting in kpi_settings:
(metric, value) = kpi_setting
if not isinstance(value, (int, float)):
raise Exception(f"Provide valid value for '{metric}' metric for endpoint {kpi_keys[0]}")
if not Metric.has_value(metric):
raise Exception(f"Metric {metric} not implemented")
Now you have to register KpiPlugin class within your Locust script and define KPI(s) like this:
events.init.add_listener
def on_locust_init(environment, **_kwargs):
KPI_SETTINGS = [{'/store/inventory': [('percentile_90', 50), ('rps', 500), ('error_rate', 0)]}]
KpiPlugin(env=environment, kpis=KPI_SETTINGS)
The above script will make your build fail in case /store/inventory endpoint won't meet one of the defined criteria — 90 percentile is worse than 50ms, RPS is under 500, the error rate is higher than 0%.
Related
I am nooby to Plugin Development but I'm trying to create a plugin in QGIS, for a Uni-subject, with its own graphical interface, which will receive a zipcode from the user and return the name of the corresponding location.
I already created the plugin skeleton, through the Plugin Builder and have designed the graphical interface with QtDesigner https://i.stack.imgur.com/h6k6Q.png . I also added the .txt file that contains the zipcodes database to the plugin folder as a resource.
From what I understand, the file to edit is the one that ends in dialog.py, through the init() method, in order to establish the connections between the signals emitted by the elements of the graphical interface and the corresponding callbacks.
However, when I change the code in the dialog.py and reload the plugin, it gives me an error, and when starting the QGIS it pop-ups an error message, and the plugin no longer appears. Error message after plugin reload
Could you give me some guidance here and maybe point me to where the problem could be? Thanks
The code is this one:
import os
import sys
import qgis.core
from qgis.PyQt import uic
from qgis.PyQt import (
QtCore,
QtWidgets
)
import geocoder
sys.path.append(os.path.dirname(__file__))
FORM_CLASS, _ = uic.loadUiType(
os.path.join(
os.path.dirname(__file__),
"example_dialog_base.ui"
),
resource_suffix=""
)
class ExampleDialog(QtWidgets.QDialog, FORM_CLASS):
POSTAL_CODES_PATH = ":/plugins/example/todos_cp.txt"
def __init__(self, parent=None):
"""Constructor."""
super(ExampleDialog, self).__init__(parent)
self.setupUi(self)
# connect signals
self.postal_code_le.textChanged.connect(self.toggle_find_button)
self.find_code_btn.clicked.connect(self.execute)
# set initial state
self.find_code_btn.setEnabled(False)
def toggle_find_button(self):
if self.postal_code_le.text() == "":
self.find_code_btn.setEnabled(False)
else:
self.find_code_btn.setEnabled(True)
def execute(self):
self.address_te.clear()
try:
raw_postal_code = self.postal_code_le.text()
main_code, extension = validate_postal_code(raw_postal_code)
record = self.find_record(main_code, extension)
place_name = record[3]
self.address_te.setPlainText(place_name)
if self.create_layer_chb.isChecked():
self.handle_layer_creation(record)
except (ValueError, RuntimeError) as err:
self.show_error(str(err))
def find_record(self, main_code, extension):
file_handler = QtCore.QFile(self.POSTAL_CODES_PATH)
file_handler.open(QtCore.QIODevice.ReadOnly)
stream = QtCore.QTextStream(file_handler)
while not stream.atEnd():
line = stream.readLine()
info = line.split(";")
code1 = info[-3]
code2 = info[-2]
if code1 == main_code and code2 == extension:
result = info
break
else:
raise RuntimeError("Sem resultados")
return result
def handle_layer_creation(self, record):
place_name = record[3]
point = geocode_place_name(place_name)
print("lon: {} - lat: {}".format(point.x(), point.y()))
layer = create_point_layer(
point,
f"found_location_for_{record[-3]}_{record[-2]}",
place_name
)
current_project = qgis.core.QgsProject.instance()
current_project.addMapLayer(layer)
def show_error(self, message):
message_bar = self.iface.messageBar()
message_bar.pushMessage("Error", message, level=message_bar.Critical)
def validate_postal_code(raw_postal_code):
code1, code2 = raw_postal_code.partition("-")[::2]
if code1 == "" or code2 == "":
raise ValueError(
"Incorrect postal code: {!r}".format(raw_postal_code))
return code1, code2
def geocode_place_name(place_name):
geocoder_object = geocoder.osm(place_name)
lon = geocoder_object.json.get("lng")
lat = geocoder_object.json.get("lat")
if lat is None or lon is None:
raise RuntimeError(
"Could not retrieve lon/lat for "
"place: {!r}".format(place_name)
)
point = qgis.core.QgsPointXY(lon, lat)
return point
def create_point_layer(point, layer_name, place_name):
layer = qgis.core.QgsVectorLayer(
"Point?crs=epsg:4326&field=address:string(100)",
layer_name,
"memory"
)
provider = layer.dataProvider()
geometry = qgis.core.QgsGeometry.fromPointXY(point)
feature = qgis.core.QgsFeature()
feature.setGeometry(geometry)
feature.setAttributes([place_name])
provider.addFeatures([feature])
layer.updateExtents()
return layer
I am trying to execute the Data Generator function provided my Microsoft to test streaming data to Event Hubs.
Unfortunately, I keep on getting the error
Processing failure: No such file or directory
When I try and execute the function:
%scala
DummyDataGenerator.start(15)
Can someone take a look at the code and help decipher why I'm getting the error:
class DummyDataGenerator:
streamDirectory = "/FileStore/tables/flight"
None # suppress output
I'm not sure how the above cell gets called into the function DummyDataGenerator
%scala
import scala.util.Random
import java.io._
import java.time._
// Notebook #2 has to set this to 8, we are setting
// it to 200 to "restore" the default behavior.
spark.conf.set("spark.sql.shuffle.partitions", 200)
// Make the username available to all other languages.
// "WARNING: use of the "current" username is unpredictable
// when multiple users are collaborating and should be replaced
// with the notebook ID instead.
val username = com.databricks.logging.AttributionContext.current.tags(com.databricks.logging.BaseTagDefinitions.TAG_USER);
spark.conf.set("com.databricks.training.username", username)
object DummyDataGenerator extends Runnable {
var runner : Thread = null;
val className = getClass().getName()
val streamDirectory = s"dbfs:/tmp/$username/new-flights"
val airlines = Array( ("American", 0.17), ("Delta", 0.12), ("Frontier", 0.14), ("Hawaiian", 0.13), ("JetBlue", 0.15), ("United", 0.11), ("Southwest", 0.18) )
val reasons = Array("Air Carrier", "Extreme Weather", "National Aviation System", "Security", "Late Aircraft")
val rand = new Random(System.currentTimeMillis())
var maxDuration = 3 * 60 * 1000 // default to three minutes
def clean() {
System.out.println("Removing old files for dummy data generator.")
dbutils.fs.rm(streamDirectory, true)
if (dbutils.fs.mkdirs(streamDirectory) == false) {
throw new RuntimeException("Unable to create temp directory.")
}
}
def run() {
val date = LocalDate.now()
val start = System.currentTimeMillis()
while (System.currentTimeMillis() - start < maxDuration) {
try {
val dir = s"/dbfs/tmp/$username/new-flights"
val tempFile = File.createTempFile("flights-", "", new File(dir)).getAbsolutePath()+".csv"
val writer = new PrintWriter(tempFile)
for (airline <- airlines) {
val flightNumber = rand.nextInt(1000)+1000
val deptTime = rand.nextInt(10)+10
val departureTime = LocalDateTime.now().plusHours(-deptTime)
val (name, odds) = airline
val reason = Random.shuffle(reasons.toList).head
val test = rand.nextDouble()
val delay = if (test < odds)
rand.nextInt(60)+(30*odds)
else rand.nextInt(10)-5
println(s"- Flight #$flightNumber by $name at $departureTime delayed $delay minutes due to $reason")
writer.println(s""" "$flightNumber","$departureTime","$delay","$reason","$name" """.trim)
}
writer.close()
// wait a couple of seconds
//Thread.sleep(rand.nextInt(5000))
} catch {
case e: Exception => {
printf("* Processing failure: %s%n", e.getMessage())
return;
}
}
}
println("No more flights!")
}
def start(minutes:Int = 5) {
maxDuration = minutes * 60 * 1000
if (runner != null) {
println("Stopping dummy data generator.")
runner.interrupt();
runner.join();
}
println(s"Running dummy data generator for $minutes minutes.")
runner = new Thread(this);
runner.run();
}
def stop() {
start(0)
}
}
DummyDataGenerator.clean()
displayHTML("Imported streaming logic...") // suppress output
you should be able to use the Databricks Labs Data Generator on the Databricks community edition. I'm providing the instructions below:
Running Databricks Labs Data Generator on the community edition
The Databricks Labs Data Generator is a Pyspark library so the code to generate the data needs to be Python. But you should be able to create a view on the generated data and consume it from Scala if that's your preferred language.
You can install the framework on the Databricks community edition by creating a notebook with the cell
%pip install git+https://github.com/databrickslabs/dbldatagen
Once it's installed you can then use the library to define a data generation spec and by using build, generate a Spark dataframe on it.
The following example shows generation of batch data similar to the data set you are trying to generate. This should be placed in a separate notebook cell
Note - here we generate 10 million records to illustrate ability to create larger data sets. It can be used to generate datasets much larger than that
%python
num_rows = 10 * 1000000 # number of rows to generate
num_partitions = 8 # number of Spark dataframe partitions
delay_reasons = ["Air Carrier", "Extreme Weather", "National Aviation System", "Security", "Late Aircraft"]
# will have implied column `id` for ordinal of row
flightdata_defn = (dg.DataGenerator(spark, name="flight_delay_data", rows=num_rows, partitions=num_partitions)
.withColumn("flightNumber", "int", minValue=1000, uniqueValues=10000, random=True)
.withColumn("airline", "string", minValue=1, maxValue=500, prefix="airline", random=True, distribution="normal")
.withColumn("original_departure", "timestamp", begin="2020-01-01 01:00:00", end="2020-12-31 23:59:00", interval="1 minute", random=True)
.withColumn("delay_minutes", "int", minValue=20, maxValue=600, distribution=dg.distributions.Gamma(1.0, 2.0))
.withColumn("delayed_departure", "timestamp", expr="cast(original_departure as bigint) + (delay_minutes * 60) ", baseColumn=["original_departure", "delay_minutes"])
.withColumn("reason", "string", values=delay_reasons, random=True)
)
df_flight_data = flightdata_defn.build()
display(df_flight_data)
You can find information on how to generate streaming data in the online documentation at https://databrickslabs.github.io/dbldatagen/public_docs/using_streaming_data.html
You can create a named temporary view over the data so that you can access it from SQL or Scala using one of two methods:
1: use createOrReplaceTempView
df_flight_data.createOrReplaceTempView("delays")
2: use options for build. In this case the name passed to the Data Instance initializer will be the name of the view
i.e
df_flight_data = flightdata_defn.build(withTempView=True)
This code will not work on the community edition because of this line:
val dir = s"/dbfs/tmp/$username/new-flights"
as there is no DBFS fuse on Databricks community edition (it's supported only on full Databricks). It's potentially possible to make it working by:
Changing that directory to local directory, like, /tmp or something like
adding a code (after writer.close()) to list flights-* files in that local directory, and using dbutils.fs.mv to move them into streamDirectory
Is there a way to get the task_ids of all members of a chord? My goal is to track to the progress of each tasks of the chords. Here is my attempt so far:
import random
import time
from typing import List
import celery
from celery import Celery, chord
from celery.utils.log import get_task_logger
app = Celery(
"chaintasks",
backend="redis://localhost:6379",
broker="pyamqp://guest#localhost//",
)
app.conf.update(task_track_started=True, result_persistent=True)
#app.task(bind=True)
def process_item(self: celery.Task, item: str) -> str:
t = random.randint(0, 10)
for i in range(t):
chord_id = self.request.chord["options"]["task_id"]
self.update_state(
meta={"progress": i / t}, # How do I access this progress value?
)
self.update_state( # This way I write the group_id in the main task info,
task_id=chord_id, # but maybe I don't even need this?
meta={"group_id": self.request.group},
state="STARTED"
)
time.sleep(1)
return item + "_processed"
#app.task()
def group_items(items: List[str]) -> str:
return ":".join(items)
#app.task
def process_and_group(items: List[str]):
task = chord((process_item.s(i) for i in items), group_items.s())
res = task.delay()
return res.id
random.seed(42)
if __name__ == "__main__":
all_items = ["item1", "item2", "item3", "item4"]
res1 = process_and_group.delay(all_items)
while True:
subtask_id = res1.result
if subtask_id is None:
print("initial", res1.state)
else:
res2 = app.AsyncResult(subtask_id)
print("subtask state", res2.state)
info = res2.info
print("subtask info", res2.info)
if isinstance(res2.info, dict):
group_id = info.get("group_id")
if group_id is not None:
group_res = app.GroupResult(group_id)
# Ideally here, I would like to be able to track the progress all the chords tasks,
# something like an average of all progresses would be OK.
print("group results", group_res.results) # group_res.results is None, unfortunately
if res2.state == "SUCCESS":
break
time.sleep(0.5)
print("subtask result", res2.result)
How do I get something out of this self.request.group UUID? Is there a way to track the progress of chord subtasks? I'm open to any modification of this MWE to get it working.
I am creating a REST API using Flask, SQLAlchemy, and Marshmallow. I have defined my Product Model in app.py as:
from flask import Flask, request, jsonify
from flask_sqlalchemy import SQLAlchemy
from flask_marshmallow import Marshmallow
import os
# Initialize App
app = Flask(__name__)
basedir = os.path.abspath(os.path.dirname(__file__))
# Database Setup
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///' + os.path.join(basedir, 'db.sqlite')
app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False
# Init db
db = SQLAlchemy(app)
# Init marshmallow
ma = Marshmallow(app)
# Product Class/Model
class Product(db.Model):
id = db.Column(db.Integer, primary_key=True)
price = db.Column(db.Integer)
qty = db.Column(db.Integer)
def __init__(self, price, qty):
self.price = price
self.qty = qty
# Product Schema
class ProductSchema(ma.Schema):
class Meta:
fields = ('id', 'price', 'qty')
# Init Schema
product_schema = ProductSchema()
products_schema = ProductSchema(many=True)
# Create Product
#app.route('/product', methods=['POST'])
def add_product():
price = request.json['price']
qty = request.json['qty']
new_product = Product(price, qty)
db.session.add(new_product)
db.session.commit()
return product_schema.jsonify(new_product)
# Run the Server
if __name__ == '__main__':
app.run(debug=True)
I have to perform the following logic:
Setting price value between 0 - 100
Setting qty value between 0 - 100
If success return 200, if anything wrong return 500.
I am not able to set Integer value between the given range by db.Integer([0, 100]) as its giving me error:
TypeError: Integer() takes no arguments
How do I implement the above logic?
Edit: I've misunderstood the question and made a new function.
def ExpectedRange(var1):
return 200 if var1 in range(0,100) else 500
# Create Product
#app.route('/product', methods=['POST'])
def add_product():
price = request.json['price']
qty = request.json['qty']
if ExpectedRange(price) and ExpectedRange(qty) == 200:
new_product = Product(price, qty)
db.session.add(new_product)
db.session.commit()
return product_schema.jsonify(new_product)
#else:
# Show error. I recommend you using the method 'flash' in flask.
I think the problem with your code by using db.Integer([0, 100]) as a way to find the value between 0 and 100, instead, what you should be doing is by using range with the help of a method called randrange from the library random. With all due respect, I actually don't know what you are trying to accomplish, if I am wrong, please correct me in the comments and I'll correct my post.
What I recommend you doing is to not set the price and qty in the model class, but rather, in an entirely different function and using your model class to create the elements within your database. For example:
from random import randrange
class Product(db.Model):
id = db.Column(db.Integer, primary_key=True)
price = db.Column(db.Integer)
qty = db.Column(db.Integer)
def ProductRange(range1, range2):
return randrange(range1, range2)
print(ProductRange(1,100))
What the function ProductRange will do is to choose the range between the variable range1 and range2. As for returning 200 and 500, I am not sure what you could use with this value, but I recommend doing boolean. If it is needed, 200 and 500 is simply a constant, and you could easily implement it via putting it in a function rather than using the returned value to calculate things. So, how would you use the ProductRange function? Just follow the code below.
from random import randrange
class Product(db.Model):
id = db.Column(db.Integer, primary_key=True)
product_name = db.Column(db.String) # Ignore this line, this just for the /addpost route to get the method POST
price = db.Column(db.Integer)
qty = db.Column(db.Integer)
def ProductRange(range1, range2):
return randrange(range1, range2)
# This route is just an example of how you would use the function ProductRange
#app.route('/addpost', methods=['POST'])
def addpost():
product_name = request.form['product_name']
price = ProductRange(1,100)
qty = ProductRange(1,100)
post = Product[product_name=product_name, price=price, qty=qty]
db.session.add(post)
db.session.commit()
return redirect(url_for('index'))
If it doesn't work, please comment down below for me to help you further with this question of yours. I wish you good luck.
since you have installed marshmallow, install the marmallow-sqlalchemy and use SQLAlchemyAutoSchema feature which will allow to you to refer directly to the model and create an instance after successful load of the json object sent in request body, plus you can define your own constraints in the schema class. the marshmallow conf. will look like:
from marshmallow import ValidationError, fields
from marshmallow.validate import Range
from marshmallow_sqlalchemy import SQLAlchemyAutoSchema
ma = Marshmallow(app)
# to return marshmallow parsing error
#app.errorhandler(ValidationError)
def handle_marshmallow_validation(err):
print(err)
return jsonify(err.messages), 400
# Product Schema
class ProductSchema(ma.SQLAlchemyAutoSchema):
id = fields.Integer(required=False)
price = fields.Integer(required=True, validate=[Range(max=100, error="Value must be 100 or less")])
qty = fields.Integer(required=True, validate=[Range(max=100, error="Value must be 100 or less")])
class Meta:
model = Product
load_instance = True
now the ressource will look like:
# Create Product
#app.route('/product', methods=['POST'])
def add_product():
# here we can check the payload validity, parse it and transform it directly to instance
product_json = request.get_json()
new_product = product_schema.load(product_json)
db.session.add(new_product)
db.session.commit()
return product_schema.dump(new_product)
now if you sent value outside the range you will receive response like this
{
"price": [
"Value must be 100 or less"
],
"qty": [
"Value must be 100 or less"
]
}
Problem Statement Below,
We have a large log file which stores user interactions with an application. The entries in the log file follow the following schema: {userId, timestamp, actionType} where actionType is one of two possible values: [open, close]
Constraints:
The log file is too big to fit in memory on one machine. Also assume that the aggregated data doesn’t fit into memory.
Code has to be able to run on a single machine.
Should not use an out-of-the box implementation of mapreduce or 3rd party database; don’t assume we have a Hadoop or Spark or other distributed computing framework.
There can be multiple entries of each actionType for each user, and there might be missing entries in the log file. So a user might be missing a close record between two open records or vice versa.
Timestamps will come in strictly ascending order.
For this problem, we need to implement a class/classes that computes the average time spent by each user between open and close. Keep in mind that there are missing entries for some users, so we will have to make a choice about how to handle these entries when making our calculations. Code should follow a consistent policy with regards to how we make that choice.
The desired output for the solution should be [{userId, timeSpent},….] for all the users in the log file.
Sample log file (comma-separated, text file)
1,1435456566,open
2,1435457643,open
3,1435458912,open
1,1435459567,close
4,1435460345,open
1,1435461234,open
2,1435462567,close
1,1435463456,open
3,1435464398,close
4,1435465122,close
1,1435466775,close
Approach
Below is the code I've written in Python & Scala, which seems to be not efficient and upto the expectations of the scenario given, I'd like to feedback from community of developers in this forum how better we could optimise this code as per given scenario.
Scala implementation
import java.io.FileInputStream
import java.util.{Scanner, Map, LinkedList}
import java.lang.Long
import scala.collection.mutable
object UserMetrics extends App {
if (args.length == 0) {
println("Please provide input data file name for processing")
}
val userMetrics = new UserMetrics()
userMetrics.readInputFile(args(0),if (args.length == 1) 600000 else args(1).toInt)
}
case class UserInfo(userId: Integer, prevTimeStamp: Long, prevStatus: String, timeSpent: Long, occurence: Integer)
class UserMetrics {
val usermap = mutable.Map[Integer, LinkedList[UserInfo]]()
def readInputFile(stArr:String, timeOut: Int) {
var inputStream: FileInputStream = null
var sc: Scanner = null
try {
inputStream = new FileInputStream(stArr);
sc = new Scanner(inputStream, "UTF-8");
while (sc.hasNextLine()) {
val line: String = sc.nextLine();
processInput(line, timeOut)
}
for ((key: Integer, userLs: LinkedList[UserInfo]) <- usermap) {
val userInfo:UserInfo = userLs.get(0)
val timespent = if (userInfo.occurence>0) userInfo.timeSpent/userInfo.occurence else 0
println("{" + key +","+timespent + "}")
}
if (sc.ioException() != null) {
throw sc.ioException();
}
} finally {
if (inputStream != null) {
inputStream.close();
}
if (sc != null) {
sc.close();
}
}
}
def processInput(line: String, timeOut: Int) {
val strSp = line.split(",")
val userId: Integer = Integer.parseInt(strSp(0))
val curTimeStamp = Long.parseLong(strSp(1))
val status = strSp(2)
val uInfo: UserInfo = UserInfo(userId, curTimeStamp, status, 0, 0)
val emptyUserInfo: LinkedList[UserInfo] = new LinkedList[UserInfo]()
val lsUserInfo: LinkedList[UserInfo] = usermap.getOrElse(userId, emptyUserInfo)
if (lsUserInfo != null && lsUserInfo.size() > 0) {
val lastUserInfo: UserInfo = lsUserInfo.get(lsUserInfo.size() - 1)
val prevTimeStamp: Long = lastUserInfo.prevTimeStamp
val prevStatus: String = lastUserInfo.prevStatus
if (prevStatus.equals("open")) {
if (status.equals(lastUserInfo.prevStatus)) {
val timeSelector = if ((curTimeStamp - prevTimeStamp) > timeOut) timeOut else curTimeStamp - prevTimeStamp
val timeDiff = lastUserInfo.timeSpent + timeSelector
lsUserInfo.remove()
lsUserInfo.add(UserInfo(userId, curTimeStamp, status, timeDiff, lastUserInfo.occurence + 1))
} else if(!status.equals(lastUserInfo.prevStatus)){
val timeDiff = lastUserInfo.timeSpent + curTimeStamp - prevTimeStamp
lsUserInfo.remove()
lsUserInfo.add(UserInfo(userId, curTimeStamp, status, timeDiff, lastUserInfo.occurence + 1))
}
} else if(prevStatus.equals("close")) {
if (status.equals(lastUserInfo.prevStatus)) {
lsUserInfo.remove()
val timeSelector = if ((curTimeStamp - prevTimeStamp) > timeOut) timeOut else curTimeStamp - prevTimeStamp
lsUserInfo.add(UserInfo(userId, curTimeStamp, status, lastUserInfo.timeSpent + timeSelector, lastUserInfo.occurence+1))
}else if(!status.equals(lastUserInfo.prevStatus))
{
lsUserInfo.remove()
lsUserInfo.add(UserInfo(userId, curTimeStamp, status, lastUserInfo.timeSpent, lastUserInfo.occurence))
}
}
}else if(lsUserInfo.size()==0){
lsUserInfo.add(uInfo)
}
usermap.put(userId, lsUserInfo)
}
}
Python Implementation
import sys
def fileBlockStream(fp, number_of_blocks, block):
#A generator that splits a file into blocks and iterates over the lines of one of the blocks.
assert 0 <= block and block < number_of_blocks #Assertions to validate number of blocks given
assert 0 < number_of_blocks
fp.seek(0,2) #seek to end of file to compute block size
file_size = fp.tell()
ini = file_size * block / number_of_blocks #compute start & end point of file block
end = file_size * (1 + block) / number_of_blocks
if ini <= 0:
fp.seek(0)
else:
fp.seek(ini-1)
fp.readline()
while fp.tell() < end:
yield fp.readline() #iterate over lines of the particular chunk or block
def computeResultDS(chunk,avgTimeSpentDict,defaultTimeOut):
countPos,totTmPos,openTmPos,closeTmPos,nextEventPos = 0,1,2,3,4
for rows in chunk.splitlines():
if len(rows.split(",")) != 3:
continue
userKeyID = rows.split(",")[0]
try:
curTimeStamp = int(rows.split(",")[1])
except ValueError:
print("Invalid Timestamp for ID:" + str(userKeyID))
continue
curEvent = rows.split(",")[2]
if userKeyID in avgTimeSpentDict.keys() and avgTimeSpentDict[userKeyID][nextEventPos]==1 and curEvent == "close":
#Check if already existing userID with expected Close event 0 - Open; 1 - Close
#Array value within dictionary stores [No. of pair events, total time spent (Close tm-Open tm), Last Open Tm, Last Close Tm, Next expected Event]
curTotalTime = curTimeStamp - avgTimeSpentDict[userKeyID][openTmPos]
totalTime = curTotalTime + avgTimeSpentDict[userKeyID][totTmPos]
eventCount = avgTimeSpentDict[userKeyID][countPos] + 1
avgTimeSpentDict[userKeyID][countPos] = eventCount
avgTimeSpentDict[userKeyID][totTmPos] = totalTime
avgTimeSpentDict[userKeyID][closeTmPos] = curTimeStamp
avgTimeSpentDict[userKeyID][nextEventPos] = 0 #Change next expected event to Open
elif userKeyID in avgTimeSpentDict.keys() and avgTimeSpentDict[userKeyID][nextEventPos]==0 and curEvent == "open":
avgTimeSpentDict[userKeyID][openTmPos] = curTimeStamp
avgTimeSpentDict[userKeyID][nextEventPos] = 1 #Change next expected event to Close
elif userKeyID in avgTimeSpentDict.keys() and avgTimeSpentDict[userKeyID][nextEventPos]==1 and curEvent == "open":
curTotalTime,closeTime = missingHandler(defaultTimeOut,avgTimeSpentDict[userKeyID][openTmPos],curTimeStamp)
totalTime = curTotalTime + avgTimeSpentDict[userKeyID][totTmPos]
avgTimeSpentDict[userKeyID][totTmPos]=totalTime
avgTimeSpentDict[userKeyID][closeTmPos]=closeTime
avgTimeSpentDict[userKeyID][openTmPos]=curTimeStamp
eventCount = avgTimeSpentDict[userKeyID][countPos] + 1
avgTimeSpentDict[userKeyID][countPos] = eventCount
elif userKeyID in avgTimeSpentDict.keys() and avgTimeSpentDict[userKeyID][nextEventPos]==0 and curEvent == "close":
curTotalTime,openTime = missingHandler(defaultTimeOut,avgTimeSpentDict[userKeyID][closeTmPos],curTimeStamp)
totalTime = curTotalTime + avgTimeSpentDict[userKeyID][totTmPos]
avgTimeSpentDict[userKeyID][totTmPos]=totalTime
avgTimeSpentDict[userKeyID][openTmPos]=openTime
eventCount = avgTimeSpentDict[userKeyID][countPos] + 1
avgTimeSpentDict[userKeyID][countPos] = eventCount
elif curEvent == "open":
#Initialize userid with Open event
avgTimeSpentDict[userKeyID] = [0,0,curTimeStamp,0,1]
elif curEvent == "close":
#Initialize userid with missing handler function since there is no Open event for this User
totaltime,OpenTime = missingHandler(defaultTimeOut,0,curTimeStamp)
avgTimeSpentDict[userKeyID] = [1,totaltime,OpenTime,curTimeStamp,0]
def missingHandler(defaultTimeOut,curTimeVal,lastTimeVal):
if lastTimeVal - curTimeVal > defaultTimeOut:
return defaultTimeOut,curTimeVal
else:
return lastTimeVal - curTimeVal,curTimeVal
def computeAvg(avgTimeSpentDict,defaultTimeOut):
resDict = {}
for k,v in avgTimeSpentDict.iteritems():
if v[0] == 0:
resDict[k] = 0
else:
resDict[k] = v[1]/v[0]
return resDict
if __name__ == "__main__":
avgTimeSpentDict = {}
if len(sys.argv) < 2:
print("Please provide input data file name for processing")
sys.exit(1)
fileObj = open(sys.argv[1])
number_of_chunks = 4 if len(sys.argv) < 3 else int(sys.argv[2])
defaultTimeOut = 60000 if len(sys.argv) < 4 else int(sys.argv[3])
for chunk_number in range(number_of_chunks):
for chunk in fileBlockStream(fileObj, number_of_chunks, chunk_number):
computeResultDS(chunk, avgTimeSpentDict, defaultTimeOut)
print (computeAvg(avgTimeSpentDict,defaultTimeOut))
avgTimeSpentDict.clear() #Nullify dictionary
fileObj.close #Close the file object
Both program above gives desired output, but efficiency is what matters for this particular scenario. Let me know if you've anything better or any suggestions on existing implementation.
Thanks in Advance!!
What you are after is iterator usage. I'm not going to re-write your code, but the trick here is likely to be using an iterator. Fortunately Scala provides decent out of the box tooling for the job.
import scala.io.Source
object ReadBigFiles {
def read(fileName: String): Unit = {
val lines: Iterator[String] = Source.fromFile(fileName).getLines
// now you get iterator semantics for the file line traversal
// that means you can only go through the lines once, but you don't incur a penalty on heap usage
}
}
For your use case, you seem to require a lastUser, so you're dealing with groups of 2 entries. I think you you have two choices, either go for iterator.sliding(2), which will produce iterators for every pair, or simply add recursion to the mix using options.
def navigate(source: Iterator[String], last: Option[User]): ResultType = {
if (source.hasNext) {
val current = source.next()
last match {
case Some(existing) => // compare with previous user etc
case None => navigate(source, Some(current))
}
} else {
// exit recursion, return result
}
}
You can avoid all the code you've written to read the file and so on. If you need to count occurrences, simply build a Map inside your recursion, and increment the occurrences at every step based on your business logic.
from queue import LifoQueue, Queue
def averageTime() -> float:
logs = {}
records = Queue()
with open("log.txt") as fp:
lines = fp.readlines()
for line in lines:
if line[0] not in logs:
logs[line[0]] = LifoQueue()
logs[line[0]].put((line[1], line[2]))
else:
logs[line[0]].put((line[1], line[2]))
for k in logs:
somme = 0
count = 0
while not logs[k].empty():
l = logs[k].get()
somme = (somme + l[0]) if l[1] == "open" else (somme - l[0])
count = count + 1
records.put([k, somme, count//2])
while not records.empty():
record = records.get()
print(f"UserId={record[0]} Avg={record[1]/record[2]}")