I am trying to execute the Data Generator function provided my Microsoft to test streaming data to Event Hubs.
Unfortunately, I keep on getting the error
Processing failure: No such file or directory
When I try and execute the function:
%scala
DummyDataGenerator.start(15)
Can someone take a look at the code and help decipher why I'm getting the error:
class DummyDataGenerator:
streamDirectory = "/FileStore/tables/flight"
None # suppress output
I'm not sure how the above cell gets called into the function DummyDataGenerator
%scala
import scala.util.Random
import java.io._
import java.time._
// Notebook #2 has to set this to 8, we are setting
// it to 200 to "restore" the default behavior.
spark.conf.set("spark.sql.shuffle.partitions", 200)
// Make the username available to all other languages.
// "WARNING: use of the "current" username is unpredictable
// when multiple users are collaborating and should be replaced
// with the notebook ID instead.
val username = com.databricks.logging.AttributionContext.current.tags(com.databricks.logging.BaseTagDefinitions.TAG_USER);
spark.conf.set("com.databricks.training.username", username)
object DummyDataGenerator extends Runnable {
var runner : Thread = null;
val className = getClass().getName()
val streamDirectory = s"dbfs:/tmp/$username/new-flights"
val airlines = Array( ("American", 0.17), ("Delta", 0.12), ("Frontier", 0.14), ("Hawaiian", 0.13), ("JetBlue", 0.15), ("United", 0.11), ("Southwest", 0.18) )
val reasons = Array("Air Carrier", "Extreme Weather", "National Aviation System", "Security", "Late Aircraft")
val rand = new Random(System.currentTimeMillis())
var maxDuration = 3 * 60 * 1000 // default to three minutes
def clean() {
System.out.println("Removing old files for dummy data generator.")
dbutils.fs.rm(streamDirectory, true)
if (dbutils.fs.mkdirs(streamDirectory) == false) {
throw new RuntimeException("Unable to create temp directory.")
}
}
def run() {
val date = LocalDate.now()
val start = System.currentTimeMillis()
while (System.currentTimeMillis() - start < maxDuration) {
try {
val dir = s"/dbfs/tmp/$username/new-flights"
val tempFile = File.createTempFile("flights-", "", new File(dir)).getAbsolutePath()+".csv"
val writer = new PrintWriter(tempFile)
for (airline <- airlines) {
val flightNumber = rand.nextInt(1000)+1000
val deptTime = rand.nextInt(10)+10
val departureTime = LocalDateTime.now().plusHours(-deptTime)
val (name, odds) = airline
val reason = Random.shuffle(reasons.toList).head
val test = rand.nextDouble()
val delay = if (test < odds)
rand.nextInt(60)+(30*odds)
else rand.nextInt(10)-5
println(s"- Flight #$flightNumber by $name at $departureTime delayed $delay minutes due to $reason")
writer.println(s""" "$flightNumber","$departureTime","$delay","$reason","$name" """.trim)
}
writer.close()
// wait a couple of seconds
//Thread.sleep(rand.nextInt(5000))
} catch {
case e: Exception => {
printf("* Processing failure: %s%n", e.getMessage())
return;
}
}
}
println("No more flights!")
}
def start(minutes:Int = 5) {
maxDuration = minutes * 60 * 1000
if (runner != null) {
println("Stopping dummy data generator.")
runner.interrupt();
runner.join();
}
println(s"Running dummy data generator for $minutes minutes.")
runner = new Thread(this);
runner.run();
}
def stop() {
start(0)
}
}
DummyDataGenerator.clean()
displayHTML("Imported streaming logic...") // suppress output
you should be able to use the Databricks Labs Data Generator on the Databricks community edition. I'm providing the instructions below:
Running Databricks Labs Data Generator on the community edition
The Databricks Labs Data Generator is a Pyspark library so the code to generate the data needs to be Python. But you should be able to create a view on the generated data and consume it from Scala if that's your preferred language.
You can install the framework on the Databricks community edition by creating a notebook with the cell
%pip install git+https://github.com/databrickslabs/dbldatagen
Once it's installed you can then use the library to define a data generation spec and by using build, generate a Spark dataframe on it.
The following example shows generation of batch data similar to the data set you are trying to generate. This should be placed in a separate notebook cell
Note - here we generate 10 million records to illustrate ability to create larger data sets. It can be used to generate datasets much larger than that
%python
num_rows = 10 * 1000000 # number of rows to generate
num_partitions = 8 # number of Spark dataframe partitions
delay_reasons = ["Air Carrier", "Extreme Weather", "National Aviation System", "Security", "Late Aircraft"]
# will have implied column `id` for ordinal of row
flightdata_defn = (dg.DataGenerator(spark, name="flight_delay_data", rows=num_rows, partitions=num_partitions)
.withColumn("flightNumber", "int", minValue=1000, uniqueValues=10000, random=True)
.withColumn("airline", "string", minValue=1, maxValue=500, prefix="airline", random=True, distribution="normal")
.withColumn("original_departure", "timestamp", begin="2020-01-01 01:00:00", end="2020-12-31 23:59:00", interval="1 minute", random=True)
.withColumn("delay_minutes", "int", minValue=20, maxValue=600, distribution=dg.distributions.Gamma(1.0, 2.0))
.withColumn("delayed_departure", "timestamp", expr="cast(original_departure as bigint) + (delay_minutes * 60) ", baseColumn=["original_departure", "delay_minutes"])
.withColumn("reason", "string", values=delay_reasons, random=True)
)
df_flight_data = flightdata_defn.build()
display(df_flight_data)
You can find information on how to generate streaming data in the online documentation at https://databrickslabs.github.io/dbldatagen/public_docs/using_streaming_data.html
You can create a named temporary view over the data so that you can access it from SQL or Scala using one of two methods:
1: use createOrReplaceTempView
df_flight_data.createOrReplaceTempView("delays")
2: use options for build. In this case the name passed to the Data Instance initializer will be the name of the view
i.e
df_flight_data = flightdata_defn.build(withTempView=True)
This code will not work on the community edition because of this line:
val dir = s"/dbfs/tmp/$username/new-flights"
as there is no DBFS fuse on Databricks community edition (it's supported only on full Databricks). It's potentially possible to make it working by:
Changing that directory to local directory, like, /tmp or something like
adding a code (after writer.close()) to list flights-* files in that local directory, and using dbutils.fs.mv to move them into streamDirectory
Related
I want to move all files under a directory in my s3 bucket to another directory within the same bucket, using scala.
Here is what I have:
def copyFromInputFilesToArchive(spark: SparkSession) : Unit = {
val sourcePath = new Path("s3a://path-to-source-directory/")
val destPath = new Path("s3a:/path-to-destination-directory/")
val fs = sourcePath.getFileSystem(spark.sparkContext.hadoopConfiguration)
fs.moveFromLocalFile(sourcePath,destPath)
}
I get this error:
fs.copyFromLocalFile returns Wrong FS: s3a:// expected file:///
Error explained
The error you are seeing is because the copyFromLocalFile method is really for moving files from a local filesystem to S3. You are trying to "move" files that are already both in S3.
It is important to note that directories don't really exist in Amazon S3 buckets - The folder/file hierarchy you see is really just key-value metadata attached to the file. All file objects are really sitting in the same big, single level container and that filename key is there to give the illusion of files/folders.
To "move" files in a bucket, what you really need to do is update the filename key with the new path which is really just editing object metadata.
How to do a "move" within a bucket with Scala
To accomplish this, you'd need to copy the original object, assign the new metadata to the copy, and then write it back to S3. In practice, you can copy it and save it to the same object which will overwrite the old version, which acts a lot like an update.
Try something like this (from datahackr):
/**
* Copy object from a key to another in multiparts
*
* #param sourceS3Path S3 object key
* #param targetS3Path S3 object key
* #param fromBucketName bucket name
* #param toBucketName bucket name
*/
#throws(classOf[Exception])
#throws(classOf[AmazonServiceException])
def copyMultipart(sourceS3Path: String, targetS3Path: String, fromS3BucketName: String, toS3BucketName: String) {
// Create a list of ETag objects. You retrieve ETags for each object part uploaded,
// then, after each individual part has been uploaded, pass the list of ETags to
// the request to complete the upload.
var partETags = new ArrayList[PartETag]();
// Initiate the multipart upload.
val initRequest = new InitiateMultipartUploadRequest(toS3BucketName, targetS3Path);
val initResponse = s3client.initiateMultipartUpload(initRequest);
// Get the object size to track the end of the copy operation.
var metadataResult = getS3ObjectMetadata(sourceS3Path, fromS3BucketName);
var objectSize = metadataResult.getContentLength();
// Copy the object using 50 MB parts.
val partSize = (50 * 1024 * 1024) * 1L;
var bytePosition = 0L;
var partNum = 1;
var copyResponses = new ArrayList[CopyPartResult]();
while (bytePosition < objectSize) {
// The last part might be smaller than partSize, so check to make sure
// that lastByte isn't beyond the end of the object.
val lastByte = Math.min(bytePosition + partSize - 1, objectSize - 1);
// Copy this part.
val copyRequest = new CopyPartRequest()
.withSourceBucketName(fromS3BucketName)
.withSourceKey(sourceS3Path)
.withDestinationBucketName(toS3BucketName)
.withDestinationKey(targetS3Path)
.withUploadId(initResponse.getUploadId())
.withFirstByte(bytePosition)
.withLastByte(lastByte)
.withPartNumber(partNum + 1);
partNum += 1;
copyResponses.add(s3client.copyPart(copyRequest));
bytePosition += partSize;
}
// Complete the upload request to concatenate all uploaded parts and make the copied object available.
val completeRequest = new CompleteMultipartUploadRequest(
toS3BucketName,
targetS3Path,
initResponse.getUploadId(),
getETags(copyResponses));
s3client.completeMultipartUpload(completeRequest);
logger.info("Multipart upload complete.");
}
// This is a helper function to construct a list of ETags.
def getETags(responses: java.util.List[CopyPartResult]): ArrayList[PartETag] = {
var etags = new ArrayList[PartETag]();
val it = responses.iterator();
while (it.hasNext()) {
val response = it.next();
etags.add(new PartETag(response.getPartNumber(), response.getETag()));
}
return etags;
}
def moveObject(sourceS3Path: String, targetS3Path: String, fromBucketName: String, toBucketName: String) {
logger.info(s"Moving S3 frile from $sourceS3Path ==> $targetS3Path")
// Get the object size to track the end of the copy operation.
var metadataResult = getS3ObjectMetadata(sourceS3Path, fromBucketName);
var objectSize = metadataResult.getContentLength();
if (objectSize > ALLOWED_OBJECT_SIZE) {
logger.info("Object size is greater than 1GB. Initiating multipart upload.");
copyMultipart(sourceS3Path, targetS3Path, fromBucketName, toBucketName);
} else {
s3client.copyObject(fromBucketName, sourceS3Path, toBucketName, targetS3Path);
}
// Delete source object after successful copy
s3client.deleteObject(fromS3BucketName, sourceS3Path);
}
You will need the AWS Sdk for this.
If you are using AWS Sdk Version 1,
projectDependencies ++= Seq(
"com.amazonaws" % "aws-java-sdk-s3" % "1.12.248"
)
import com.amazonaws.services.s3.transfer.{ Copy, TransferManager, TransferManagerBuilder }
val transferManager: TransferManager =
TransferManagerBuilder.standard().build()
def copyFile(): Unit = {
val copy: Copy =
transferManager.copy(
"source-bucket-name", "source-file-key",
"destination-bucket-name", "destination-file-key"
)
copy.waitForCompletion()
}
If you are using AWS Sdk Version 2
projectDependencies ++= Seq(
"software.amazon.awssdk" % "s3" % "2.17.219",
"software.amazon.awssdk" % "s3-transfer-manager" % "2.17.219-PREVIEW"
)
import software.amazon.awssdk.regions.Region
import software.amazon.awssdk.services.s3.model.CopyObjectRequest
import software.amazon.awssdk.transfer.s3.{Copy, CopyRequest, S3ClientConfiguration, S3TransferManager}
// change Region.US_WEST_2 to your required region
// or it might even work without the whole `.region(Region.US_WEST_2)` thing
val s3ClientConfig: S3ClientConfiguration =
S3ClientConfiguration
.builder()
.region(Region.US_WEST_2)
.build()
val s3TransferManager: S3TransferManager =
S3TransferManager.builder().s3ClientConfiguration(s3ClientConfig).build()
def copyFile(): Unit = {
val copyObjectRequest: CopyObjectRequest =
CopyObjectRequest
.builder()
.sourceBucket("source-bucket-name")
.sourceKey("source-file-key")
.destinationBucket("destination-bucket-name")
.destinationKey("destination-file-key")
.build()
val copyRequest: CopyRequest =
CopyRequest
.builder()
.copyObjectRequest(copyObjectRequest)
.build()
val copy: Copy =
s3TransferManager.copy(copyRequest)
copy.completionFuture().get()
}
Keep in mind that you will need the AWS credentials with appropriate permissions for both the source and destination object. For this, You just need to get the credentials and make them available as following environment variables.
export AWS_ACCESS_KEY_ID=your_access_key_id
export AWS_SECRET_ACCESS_KEY=your_secret_access_key
export AWS_SESSION_TOKEN=your_session_token
Also, "source-file-key" and "destination-file-key" should be the full path of the file in the bucket.
I have below synpase pipeline which has 4 notebook activities. i am using large spark pool. second notebook throw error TaskCanceledException: A task was canceled. can anyone help me with this?
Notebook Code :-
val format = new SimpleDateFormat("y-MM-dd") //Store current date
println(format.format(Calendar.getInstance().getTime()))
if (metadata_df.count() > 0){
for (row <- metadata_df.rdd.collect){
val a = row(0)
println(a)
val Input_Path = f"abfss://$container_name#$account_name.dfs.core.windows.net/$relative_path/"+ format.format(Calendar.getInstance().getTime()) + "/"+a+"/*"
var DF = spark.read.option("mergeSchema",true).format("parquet").load(Input_Path)
//display(DF)
//val column_list = DF.columns
//val DF1 = DF.select(column_list.map(name => func(col(name))): _*).drop("LastModifytime")
val DF1 = DF.drop("LastModifytime")
val Out_Path = f"abfss://$container_name#$account_name.dfs.core.windows.net/Staging/"+a+"/HotData/"
DF1.repartition(1).write.format("parquet").mode("overwrite").save(Out_Path);
}
}
pipeline snapshot:-
enter image description here
configure
%%configure session -f
{
// You can get a list of valid parameters to config the session from https://github.com/cloudera/livy#request-body.
"driverMemory": "112g", // Recommended values: ["28g", "56g", "112g", "224g", "400g", "472g"]
"driverCores": 16, // Recommended values: [4, 8, 16, 32, 64, 80]
"executorMemory": "112g",
"executorCores": 16,
//"jars": ["abfs[s]: //<file_system>#<account_name>.dfs.core.windows.net/<path>/myjar.jar", "wasb[s]: //<containername>#<accountname>.blob.core.windows.net/<path>/myjar1.jar"],
"conf":
{
// Example of standard spark property, to find more available properties please visit: https://spark.apache.org/docs/latest/configuration.html#application-properties.
"spark.driver.maxResultSize": "64g",
// Example of customized property, you can specify count of lines that Spark SQL returns by configuring "livy.rsc.sql.num-rows".
"livy.rsc.sql.num-rows": "300000",
"spark.executor.heartbeatInterval":10
}
}
I have developed a scala application and I am getting almost proper results out of it. But I am not sure if my code is taking advantage of spark parallelism.
I am running spark in a standalone mode having two virtual workers with 2 cores and 2G memory each.
Below is the code snippet from the application:
The initialization of the RDD:
for(i <- 0 to limit-1){
data+=new MyClass(dimension_limit) with Serializable
}
var example_rdd = sc.parallelise(data)
RDD Operations:
var temp_rdd: RDD[MyClass] = sc.emptyRDD[MyClass]
temp_rdd = example_rdd
var updated_rdd: RDD[MyClass] = sc.emptyRDD[MyClass]
for(i <- 0 to no_of_iterations-1){
updated_rdd = temp_rdd.map{ x => updation_function(x)}
updated_rdd.count() // to trigger the map
temp_rdd = updated_rdd
}
Update function :
def update_function(x: MyClass): MyClass{
x.property1 = "value"
.
.
.
//all updations
return x
}
Below is the snapshot of the job from history server
and this is stage detail:
Kindly help me to determine if my code is running parallelly; if not what might be the issue in my implementation?
I have a spark job that (runs in spark 1.3.1) has to iterate over several keys (about 42) and process the job. Here is the structure of the program
Get the key from a map
Fetch data from hive (hadoop-yarn underneath) that is matching the key as a data frame
Process data
Write results to hive
When I run this for one key, everything works fine. When I run with 42 keys, I am getting an out of memory exception around 12th iteration. Is there a way I can clean the memory in between each iteration? Help appreciated.
Here is the high level code that I am working with.
public abstract class SparkRunnable {
public static SparkContext sc = null;
public static JavaSparkContext jsc = null;
public static HiveContext hiveContext = null;
public static SQLContext sqlContext = null;
protected SparkRunnableModel(String appName){
//get the system properties to setup the model
// Getting a java spark context object by using the constants
SparkConf conf = new SparkConf().setAppName(appName);
sc = new SparkContext(conf);
jsc = new JavaSparkContext(sc);
// Creating a hive context object connection by using java spark
hiveContext = new org.apache.spark.sql.hive.HiveContext(sc);
// sql context
sqlContext = new SQLContext(sc);
}
public abstract void processModel(Properties properties) throws Exception;
}
class ModelRunnerMain(model: String) extends SparkRunnableModel(model: String) with Serializable {
override def processModel(properties: Properties) = {
val dataLoader = DataLoader.getDataLoader(properties)
//loads keys data frame from a keys table in hive and converts that to a list
val keysList = dataLoader.loadSeriesData()
for (key <- keysList) {
runModelForKey(key, dataLoader)
}
}
def runModelForKey(key: String, dataLoader: DataLoader) = {
//loads data frame from a table(~50 col X 800 rows) using "select * from table where key='<key>'"
val keyDataFrame = dataLoader.loadKeyData()
// filter this data frame into two data frames
...
// join them to transpose
...
// convert the data frame into an RDD
...
// run map on the RDD to add bunch of new columns
...
}
}
My data frame size is under a Meg. But I create several data frames from this by selecting and joining etc. I assume all these get garbage collected once the iteration is done.
Here is configuration I am running with.
spark.eventLog.enabled:true spark.broadcast.port:7086
spark.driver.memory:12g spark.shuffle.spill:false
spark.serializer:org.apache.spark.serializer.KryoSerializer
spark.storage.memoryFraction:0.7 spark.executor.cores:8
spark.io.compression.codec:lzf spark.shuffle.consolidateFiles:true
spark.shuffle.service.enabled:true spark.master:yarn-client
spark.executor.instances:8 spark.shuffle.service.port:7337
spark.rdd.compress:true spark.executor.memory:48g
spark.executor.id: spark.sql.shuffle.partitions:700
spark.cores.max:56
Here is the exception I am getting.
Exception in thread "dag-scheduler-event-loop" java.lang.OutOfMemoryError: Java heap space
at org.apache.spark.util.io.ByteArrayChunkOutputStream.allocateNewChunkIfNeeded(ByteArrayChunkOutputStream.scala:66)
at org.apache.spark.util.io.ByteArrayChunkOutputStream.write(ByteArrayChunkOutputStream.scala:55)
at com.ning.compress.lzf.ChunkEncoder.encodeAndWriteChunk(ChunkEncoder.java:264)
at com.ning.compress.lzf.LZFOutputStream.writeCompressedBlock(LZFOutputStream.java:266)
at com.ning.compress.lzf.LZFOutputStream.write(LZFOutputStream.java:124)
at com.esotericsoftware.kryo.io.Output.flush(Output.java:155)
at com.esotericsoftware.kryo.io.Output.require(Output.java:135)
at com.esotericsoftware.kryo.io.Output.writeBytes(Output.java:220)
at com.esotericsoftware.kryo.io.Output.writeBytes(Output.java:206)
at com.esotericsoftware.kryo.serializers.DefaultArraySerializers$ByteArraySerializer.write(DefaultArraySerializers.java:29)
at com.esotericsoftware.kryo.serializers.DefaultArraySerializers$ByteArraySerializer.write(DefaultArraySerializers.java:18)
at com.esotericsoftware.kryo.Kryo.writeClassAndObject(Kryo.java:568)
at org.apache.spark.serializer.KryoSerializationStream.writeObject(KryoSerializer.scala:124)
at org.apache.spark.broadcast.TorrentBroadcast$.blockifyObject(TorrentBroadcast.scala:202)
at org.apache.spark.broadcast.TorrentBroadcast.writeBlocks(TorrentBroadcast.scala:101)
at org.apache.spark.broadcast.TorrentBroadcast.<init>(TorrentBroadcast.scala:84)
at org.apache.spark.broadcast.TorrentBroadcastFactory.newBroadcast(TorrentBroadcastFactory.scala:34)
at org.apache.spark.broadcast.TorrentBroadcastFactory.newBroadcast(TorrentBroadcastFactory.scala:29)
at org.apache.spark.broadcast.BroadcastManager.newBroadcast(BroadcastManager.scala:62)
at org.apache.spark.SparkContext.broadcast(SparkContext.scala:1051)
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitMissingTasks(DAGScheduler.scala:839)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskCompletion$15$$anonfun$apply$1.apply$mcVI$sp(DAGScheduler.scala:1042)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskCompletion$15$$anonfun$apply$1.apply(DAGScheduler.scala:1039)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskCompletion$15$$anonfun$apply$1.apply(DAGScheduler.scala:1039)
at scala.Option.foreach(Option.scala:236)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskCompletion$15.apply(DAGScheduler.scala:1039)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskCompletion$15.apply(DAGScheduler.scala:1038)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.scheduler.DAGScheduler.handleTaskCompletion(DAGScheduler.scala:1038)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1390)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1354)
Using checkpoint() or localCheckpoint() can cut the spark lineage and improve the performance of the application in iterations.
I have a scenario where a certain number of operations including a group by has to be applied on a number of small (~300MB each) files. The operation looks like this..
df.groupBy(....).agg(....)
Now to process it on multiple files, I can use a wildcard "/**/*.csv" however, that creates a single RDD and partitions it to for the operations. However, looking at the operations, it is a group by and involves lot of shuffle which is unnecessary if the files are mutually exclusive.
What, I am looking at is, a way where i can create independent RDD's on files and operate on them independently.
It is more an idea than a full solution and I haven't tested it yet.
You can start with extracting your data processing pipeline into a function.
def pipeline(f: String, n: Int) = {
sqlContext
.read
.format("com.databricks.spark.csv")
.option("header", "true")
.load(f)
.repartition(n)
.groupBy(...)
.agg(...)
.cache // Cache so we can force computation later
}
If your files are small you can adjust n parameter to use as small number of partitions as possible to fit data from a single file and avoid shuffling. It means you are limiting concurrency but we'll get back to this issue later.
val n: Int = ???
Next you have to obtain a list of input files. This step depends on a data source but most of the time it is more or less straightforward:
val files: Array[String] = ???
Next you can map above list using pipeline function:
val rdds = files.map(f => pipeline(f, n))
Since we limit concurrency at the level of the single file we want to compensate by submitting multiple jobs. Lets add a simple helper which forces evaluation and wraps it with Future
import scala.concurrent._
import ExecutionContext.Implicits.global
def pipelineToFuture(df: org.apache.spark.sql.DataFrame) = future {
df.rdd.foreach(_ => ()) // Force computation
df
}
Finally we can use above helper on the rdds:
val result = Future.sequence(
rdds.map(rdd => pipelineToFuture(rdd)).toList
)
Depending on your requirements you can add onComplete callbacks or use reactive streams to collect the results.
If you have many files, and each file is small (you say 300MB above which I would count as small for Spark), you could try using SparkContext.wholeTextFiles which will create an RDD where each record is an entire file.
By this way we can write multiple RDD parallely
public class ParallelWriteSevice implements IApplicationEventListener {
private static final IprogramLogger logger = programLoggerFactory.getLogger(ParallelWriteSevice.class);
private static ExecutorService executorService=null;
private static List<Future<Boolean>> futures=new ArrayList<Future<Boolean>>();
public static void submit(Callable callable) {
if(executorService==null)
{
executorService=Executors.newFixedThreadPool(15);//Based on target tables increase this
}
futures.add(executorService.submit(callable));
}
public static boolean isWriteSucess() {
boolean writeFailureOccured = false;
try {
for (Future<Boolean> future : futures) {
try {
Boolean writeStatus = future.get();
if (writeStatus == false) {
writeFailureOccured = true;
}
} catch (Exception e) {
logger.error("Erorr - Scdeduled write failed " + e.getMessage(), e);
writeFailureOccured = true;
}
}
} finally {
resetFutures();
if (executorService != null)
executorService.shutdown();
executorService = null;
}
return !writeFailureOccured;
}
private static void resetFutures() {
logger.error("resetFutures called");
//futures.clear();
}
}