Generic class wrapper in scala - scala

Hello I would like to create a generic wrapper in scala in order to track the changes of the value of any type. I don't know/haven't found any other ways so far and I was thinking of creating a class and I've been trying to use the Dynamic but it has some limitations.
case class Wrapper[T](value: T) extends Dynamic {
private val valueClass = value.getClass
def applyDynamic(id: String)(parameters: Any*) = {
val objectParameters = parameters map (x => x.asInstanceOf[Object])
val parameterClasses = objectParameters map (_.getClass)
val method = valueClass.getMethod(id, parameterClasses:_*)
val res = method.invoke(value, objectParameters:_*)
// TODO: Logic that will eventually create some kind of event about the method invoked.
new Wrapper(res)
}
}
With this code I have trouble when invoking the plus("+") method on two Integers and I don't understand why. Isn't there a "+" method in the Int class? The error I am getting when I try addition with both a type of Wrapper/Int is:
var wrapped1 = Wrapper(1)
wrapped1 = wrapped1 + Wrapper[2] // or just 2
type mismatch;
found : Wrapper[Int]/Int
required: String
Why is it expecting a string?
If possible it would also be nice to be able to work with both the Wrapper[T] and the T methods seamlessly, e.g.
val a = Wrapper[Int](1)
val b = Wrapper[Int](2)
val c = 3
a + b // Wrapper[Int].+(Wrapper[Int])
a + c // Wrapper[Int].+(Int)
c + a // Int.+(Wrapper[Int])

Well, if youre trying to make a proxy which will get any changes of desired values you'l probably fail without agents(https://dzone.com/articles/java-agent-1) because it will force you make code modifications for bytecode that accepts final classes and primitives to accept your proxy instead of that and it would require more than intercepting changes of "just class" but also all classes of members and produce origin-of-value analysis and so on. It's by no way trivial problem.
Another approach is to produce diffs of case classes by comparing classes in certain points of execution and there's generic implementation like that, it uses derivation for computing diffs: https://github.com/ivan71kmayshan27/ShapelesDerivationExample I believe you can came with easier solution with magnolia. Actualy this one is unable to work for just classes unless you write your own macro and have some problems regarding ordered and unordered collections.

Related

Why this map function does not give traits' simple names

I try to get names of all trait a class extends using getInterfaces which returns an array of trait's names. When I manually access each member of the array, the method getName returns simple names like this
trait A
trait B
class C() extends A, B
val c = C()
val arr = c.getClass.getInterfaces
arr(0).getName // : String = A
arr(1).getName // : String = B
However, when I use map function on arr. The resulting array contains a cryptic version of trait's names
arr.map(t => t.getName) // : Array[String] = Array(repl$.rs$line$1$A, repl$.rs$line$2$B)
The goal of this question is not about how to get the resulting array that contains simple names (for that purpose, I can just use arr.map(t => t.getSimpleName).) What I'm curious about is that why accessing array manually and using a map do not yield a compatible result. Am I wrong to think that both ways are equivalent?
I believe you run things in Scala REPL or Ammonite.
When you define:
trait A
trait B
class C() extends A, B
classes A, B and C aren't defined in top level of root package. REPL creates some isolated environment, compiles the code and loads the results into some inner "anonymous" namespace.
Except this is not true. Where this bytecode was created is reflected in class name. So apparently there was something similar (not necessarily identical) to
// repl$ suggest object
object repl {
// .rs sound like nested object(?)
object rs {
// $line sounds like nested class
class line { /* ... */ }
// $line$1 sounds like the first anonymous instance of line
new line { trait A }
// import from `above
// $line$2 sounds like the second anonymous instance of line
new line { trait B }
// import from above
//...
}
}
which was made because of how scoping works in REPL: new line creates a new scope with previous definitions seen and new added (possibly overshadowing some old definition). This could be achieved by creating a new piece of code as code of new anonymous class, compiling it, reading into classpath, instantiating and importing its content. Byt putting each new line into separate class REPL is able to compile and run things in steps, without waiting for you to tell it that the script is completed and closed.
When you are accessing class names with runtime reflection you are seeing the artifacts of how things are being evaluated. One path might go trough REPLs prettifiers which hide such things, while the other bypass them so you see the raw value as JVM sees it.
The problem is not with map rather with Array, especially its toString method (which is one among the many reasons for not using Array).
Actually, in this case it is even worse since the REPL does some weird things to try to pretty-print Arrays which in this case didn't work well (and, IMHO, just add to the confusion)
You can fix this problem calling mkString directly like:
val arr = c.getClass.getInterfaces
val result = arr.map(t => t.getName)
val text = result.mkString("[", ", ", "]")
println(text)
However, I would rather suggest just not using Array at all, instead convert it to a proper collection (e.g. List) as soon as possible like:
val interfaces = c.getClass.getInterfaces.toList
interfaces .map(t => t.getName)
Note: About the other reasons for not using Arrays
They are mutable.
Thet are invariant.
They are not part of the collections hierarchy thus you can't use them on generic methods (well, you actually can but that requires more tricks).
Their equals is by reference instead of by value.

How can I dynamically (runtime) generate a sorted collection in Scala using the java.lang.reflect.Type?

Given an array of items I need to generate a sorted collection in Scala for a java.lang.reflect.Type but I'm unable to do so. The following snippet might explain better.
def buildList(paramType: Type): SortedSet[_] = {
val collection = new Array[Any](5)
for (i <- 0 until 5) {
collection(i) = new EasyRandom().nextObject(paramType.asInstanceOf[Class[Any]])
}
SortedSet(collection:_*)
}
I'm unable to do as I get the error "No implicits found for parameter ord: Ordering[Any]". I'm able to work around this if I swap to an unsorted type such as Set.
def buildList(paramType: Type): Set[_] = {
val collection = new Array[Any](5)
for (i <- 0 until 5) {
collection(i) = new EasyRandom().nextObject(paramType.asInstanceOf[Class[Any]])
}
Set(collection:_*)
}
How can I dynamically build a sorted set at runtime? I've been looking into how Jackson tries to achieve the same but I couldn't quite follow how to get T here: https://github.com/FasterXML/jackson-module-scala/blob/0e926622ea4e8cef16dd757fa85400a0b9dcd1d3/src/main/scala/com/fasterxml/jackson/module/scala/introspect/OrderingLocator.scala#L21
(Please excuse me if my question is unclear.)
This happens because SortedSet needs a contextual (implicit) Ordering type class instance for a given type A
However, as Luis said on the comment section, I'd strongly advice you against using this approach and using a safer, strongly typed one, instead.
Generating random case classes (which I suppose you're using since you're using Scala) should be easy with the help of some libraries like magnolia. That would turn your code into something like this:
def randomList[A : Ordering : Arbitrary]: SortedSet[A] = {
val arb: Arbitrary[A] = implicitly[Arbitrary[A]]
val sampleData = (1 to 5).map(arb.arbitrary.sample)
SortedSet(sampleData)
}
This approach involves some heavy concepts like implicits and type classes, but is way safer.

Using a Lens on a non-case class extending something with a constructor in Scala

I am probably thinking about this the wrong way, but I am having trouble in Scala to use lenses on classes extending something with a constructor.
class A(c: Config) extends B(c) {
val x: String = doSomeProcessing(c, y) // y comes from B
}
I am trying to create a Lens to mutate this class, but am having trouble doing so. Here is what I would like to be able to do:
val l = Lens(
get = (_: A).x,
set = (c: A, xx: String) => c.copy(x = xx) // doesn't work because not a case class
)
I think it all boils down to finding a good way to mutate this class.
What are my options to achieve something like that? I was thinking about this in 2 ways:
Move the initialization logic into a companion A object into a def apply(c: Config), and change the A class to be a case class that gets created from the companion object. Unfortunately I can't extend from B(c) in my object because I only have access to c in its apply method.
Make x a var. Then in the Lens.set just A.clone then set the value of x then return the cloned instance. This would probably work but seems pretty ugly, not to mention changing this to a var might raise a few eyebrows.
Use some reflection magic to do the copy. Not really a fan of this approach if I can avoid it.
What do you think? Am I thinking about this really the wrong way, or is there an easy solution to this problem?
This depends on what you expect your Lens to do. A Lens laws specify that the setter should replace the value that the getter would get, while keeping everything else unchanged. It is unclear what is meant by everything else here.
Do you wish to have the constructor for B called when setting? Do you which the doSomeProcessing method called?
If all your methods are purely functional, then you may consider that the class A has two "fields", c: Config and x: String, so you might as well replace it with a case class with those fields. However, this will cause a problem while trying to implement the constructor with only c as parameter.
What I would consider is doing the following:
class A(val c: Config) extends B(c) {
val x = doSomeProcessing(c, y)
def copy(newX: String) = new A(c) { override val x = newX }
}
The Lens you wrote is now perfectly valid (except for the named parameter in the copy method).
Be careful if you have other properties in A which depend on x, this might create an instance with unexpected values for these.
If you do not wish c to be a property of class A, then you won't be able to clone it, or to rebuild an instance without giving a Config to your builder, which Lenses builder cannot have, so it seems your goal would be unachievable.

Can Scala infer the actual type from the return type actually expected by the caller?

I have a following question. Our project has a lot of code, that runs tests in Scala. And there is a lot of code, that fills the fields like this:
production.setProduct(new Product)
production.getProduct.setUuid("b1253a77-0585-291f-57a4-53319e897866")
production.setSubProduct(new SubProduct)
production.getSubProduct.setUuid("89a877fa-ddb3-3009-bb24-735ba9f7281c")
Eventually, I grew tired from this code, since all those fields are actually subclasses of the basic class that has the uuid field, so, after thinking a while, I wrote the auxiliary function like this:
def createUuid[T <: GenericEntity](uuid: String)(implicit m : Manifest[T]) : T = {
val constructor = m.runtimeClass.getConstructors()(0)
val instance = constructor.newInstance().asInstanceOf[T]
instance.setUuid(uuid)
instance
}
Now, my code got two times shorter, since now I can write something like this:
production.setProduct(createUuid[Product]("b1253a77-0585-291f-57a4-53319e897866"))
production.setSubProduct(createUuid[SubProduct]("89a877fa-ddb3-3009-bb24-735ba9f7281c"))
That's good, but I am wondering, if I could somehow implement the function createUuid so the last bit would like this:
// Is that really possible?
production.setProduct(createUuid("b1253a77-0585-291f-57a4-53319e897866"))
production.setSubProduct(createUuid("89a877fa-ddb3-3009-bb24-735ba9f7281c"))
Can scala compiler guess, that setProduct expects not just a generic entity, but actually something like Product (or it's subclass)? Or there is no way in Scala to implement this even shorter?
Scala compiler won't infer/propagate the type outside-in. You could however create implicit conversions like:
implicit def stringToSubProduct(uuid: String): SubProduct = {
val n = new SubProduct
n.setUuid(uuid)
n
}
and then just call
production.setSubProduct("89a877fa-ddb3-3009-bb24-735ba9f7281c")
and the compiler will automatically use the stringToSubProduct because it has applicable types on the input and output.
Update: To have the code better organized I suggest wrapping the implicit defs to a companion object, like:
case class EntityUUID(uuid: String) {
uuid.matches("[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}") // possible uuid format check
}
case object EntityUUID {
implicit def toProduct(e: EntityUUID): Product = {
val p = new Product
p.setUuid(e.uuid)
p
}
implicit def toSubProduct(e: EntityUUID): SubProduct = {
val p = new SubProduct
p.setUuid(e.uuid)
p
}
}
and then you'd do
production.setProduct(EntityUUID("b1253a77-0585-291f-57a4-53319e897866"))
so anyone reading this could have an intuition where to find the conversion implementation.
Regarding your comment about some generic approach (having 30 types), I won't say it's not possible, but I just do not see how to do it. The reflection you used bypasses the type system. If all the 30 cases are the same piece of code, maybe you should reconsider your object design. Now you can still implement the 30 implicit defs by calling some method that uses reflection similar what you have provided. But you will have the option to change it in the future on just this one (30) place(s).

Why do you need Arbitraries in scalacheck?

I wonder why Arbitrary is needed because automated property testing requires property definition, like
val prop = forAll(v: T => check that property holds for v)
and value v generator. The user guide says that you can create custom generators for custom types (a generator for trees is exemplified). Yet, it does not explain why do you need arbitraries on top of that.
Here is a piece of manual
implicit lazy val arbBool: Arbitrary[Boolean] = Arbitrary(oneOf(true, false))
To get support for your own type T you need to define an implicit def
or val of type Arbitrary[T]. Use the factory method Arbitrary(...) to
create the Arbitrary instance. This method takes one parameter of type
Gen[T] and returns an instance of Arbitrary[T].
It clearly says that we need Arbitrary on top of Gen. Justification for arbitrary is not satisfactory, though
The arbitrary generator is the generator used by ScalaCheck when it
generates values for property parameters.
IMO, to use the generators, you need to import them rather than wrapping them into arbitraries! Otherwise, one can argue that we need to wrap arbitraries also into something else to make them usable (and so on ad infinitum wrapping the wrappers endlessly).
You can also explain how does arbitrary[Int] convert argument type into generator. It is very curious and I feel that these are related questions.
forAll { v: T => ... } is implemented with the help of Scala implicits. That means that the generator for the type T is found implicitly instead of being explicitly specified by the caller.
Scala implicits are convenient, but they can also be troublesome if you're not sure what implicit values or conversions currently are in scope. By using a specific type (Arbitrary) for doing implicit lookups, ScalaCheck tries to constrain the negative impacts of using implicits (this use also makes it similar to Haskell typeclasses that are familiar for some users).
So, you are entirely correct that Arbitrary is not really needed. The same effect could have been achieved through implicit Gen[T] values, arguably with a bit more implicit scoping confusion.
As an end-user, you should think of Arbitrary[T] as the default generator for the type T. You can (through scoping) define and use multiple Arbitrary[T] instances, but I wouldn't recommend it. Instead, just skip Arbitrary and specify your generators explicitly:
val myGen1: Gen[T] = ...
val mygen2: Gen[T] = ...
val prop1 = forAll(myGen1) { t => ... }
val prop2 = forAll(myGen2) { t => ... }
arbitrary[Int] works just like forAll { n: Int => ... }, it just looks up the implicit Arbitrary[Int] instance and uses its generator. The implementation is simple:
def arbitrary[T](implicit a: Arbitrary[T]): Gen[T] = a.arbitrary
The implementation of Arbitrary might also be helpful here:
sealed abstract class Arbitrary[T] {
val arbitrary: Gen[T]
}
ScalaCheck has been ported from the Haskell QuickCheck library. In Haskell type-classes only allow one instance for a given type, forcing you into this sort of separation.
In Scala though, there isn't such a constraint and it would be possible to simplify the library. My guess is that, ScalaCheck being (initially written as) a 1-1 mapping of QuickCheck, makes it easier for Haskellers to jump into Scala :)
Here is the Haskell definition of Arbitrary
class Arbitrary a where
-- | A generator for values of the given type.
arbitrary :: Gen a
And Gen
newtype Gen a
As you can see they have a very different semantic, Arbitrary being a type class, and Gen a wrapper with a bunch of combinators to build them.
I agree that the argument of "limiting the scope through semantic" is a bit vague and does not seem to be taken seriously when it comes to organizing the code: the Arbitrary class sometimes simply delegates to Gen instances as in
/** Arbirtrary instance of Calendar */
implicit lazy val arbCalendar: Arbitrary[java.util.Calendar] =
Arbitrary(Gen.calendar)
and sometimes defines its own generator
/** Arbitrary BigInt */
implicit lazy val arbBigInt: Arbitrary[BigInt] = {
val long: Gen[Long] =
Gen.choose(Long.MinValue, Long.MaxValue).map(x => if (x == 0) 1L else x)
val gen1: Gen[BigInt] = for { x <- long } yield BigInt(x)
/* ... */
Arbitrary(frequency((5, gen0), (5, gen1), (4, gen2), (3, gen3), (2, gen4)))
}
So in effect this leads to code duplication (each default Gen being mirrored by an Arbitrary) and some confusion (why isn't Arbitrary[BigInt] not wrapping a default Gen[BigInt]?).
My reading of that is that you might need to have multiple instances of Gen, so Arbitrary is used to "flag" the one that you want ScalaCheck to use?