Browsing VSAM files and DB2 tables using TSQ - db2

I'm finding better ways on browsing VSAM records and DB2 tables in CICS. The current one I'm practicing is by using readnext/prev for browsing VSAM files and using cursors to browse DB2 tables. How can I utilize TSQ when I do browsing of files/tables? My sample application both have features of writing to VSAM file/inserting to DB2 table and browsing them as well.

Like what if i'm browsing the vsam file/db2 table while others are
writing to vsam/inserting to db2 tables. Will the newly added records
appear while i'm browsing at the same time?
It depends. From a VSAM point of view, your CICS task will hold a position in the VSAM file. You may not be able to see newly inserted records until they have been committed by their originating task. And your ability to see inserted records will depend on how your task and the other task are accessing the VSAM file. As long as all CICS access takes place in a single CICS region either a stand-alone region or in a File-Owning Region (aka FOR), then any CICS task accessing the file will be able to see committed new records.
If tasks are running in multiple CICS regions without using an FOR, then the file needs to be opened in RLS mode in all the regions to preserve integrity of the file contents.
Batch updates/insertions to non-RLS files can cause similar problems as trying to update non-RLS files from two CICS regions.

In your question you has about using TSQ but I believe your asking how to see the contents of temp storage queues.
CICS provides a transaction CEBR for browsing Temp Storage Queues (TSQ).
Doc for CEBR can be found here

Related

write apache iceberg table to azure ADLS / S3 without using external catalog

I'm trying to create an iceberg table format on cloud object storage.
In the below image we can see that iceberg table format needs a catalog. This catalog stores current metadata pointer, which points to the latest metadata. The Iceberg quick start doc lists JDBC, Hive MetaStore, AWS Glue, Nessie and HDFS as list of catalogs that can be used.
My goal is to store the current metadata pointer(version-hint.text) along with rest of the table data(metadata, manifest lists, manifest, parquet data files) in the object store itself.
With HDFS as the catalog, there’s a file called version-hint.text in
the table’s metadata folder whose contents is the version number of
the current metadata file.
Looking at HDFS as one of the possible catalogs, I should be able to use ADLS or S3 to store the current metadata pointer along with rest of the data. For example: spark connecting to ADLS using ABFSS interface and creating iceberg table along with catalog.
My question is
Is it safe to use version hint file as current metadata pointer in ADLS/S3? Will I lose any of the iceberg features if I do this? Looking at this comment from one of the contributors suggests that its not ideal for production.
The version hint file is used for Hadoop tables, which are named that
way because they are intended for HDFS. We also use them for local FS
tests, but they can't be safely used concurrently with S3. For S3,
you'll need a metastore to enforce atomicity when swapping table
metadata locations. You can use the one in iceberg-hive to use the
Hive metastore.
Looking at comments on this thread, Is version-hint.text file optional?
we iterate through on the possible metadata locations and stop only if
there is not new snapshot is available
Could someone please clarify?
I'm trying to do a POC with Iceberg. At this point the requirement is to be able to write new data from data bricks to the table at least every 10 mins. This frequency might increase in the future.
The data once written will be read by databricks and dremio.
I would definitely try to use a catalog other than the HadoopCatalog / hdfs type for production workloads.
As somebody who works on Iceberg regularly (I work at Tabular), I can say that we do think of the hadoop catalog as being more for testing.
The major reason for that, as mentioned in your threads, is that the catalog provides an atomic locking compare-and-swap operation for the current top level metadata.json file. This compare and swap operation allows for the query that's updating the table to grab a lock for the table after doing its work (optimistic locking), write out the new metadata file, update the state in the catalog to point to the new metadata file, and then release that lock.
The lock isn't something that really works out of the box with HDFS / hadoop type catalog. And then it becomes possible for two concurrent actions to write out a metadata file, and then one sets it and the other's work gets erased or undefined behavior occurs as ACID compliance is lost.
If you have an RDS instance or some sort of JDBC database, I would suggest that you consider using that temporarily. There's also the DynamoDB catalog, and if you're using Dremio then nessie can be used as your catalog as well
In the next version of Iceberg -- the next major version after 0.14, which will likely be 1.0.0, there is a procedure to register tables into a catalog, which makes it easy to move a table from one catalog to another in a very efficient metadata only operation, such as CALL catalog.system.register_table('$new_table_name', '$metadata_file_location');
So you're not locked into one catalog if you start with something simple like the JDBC catalog and then move onto something else. If you're just working out a POC, you could start with the Hadoop catalog and then move to something like the JDBC catalog once you're more familiar, but it's important to be aware of the potential pitfalls of the hadoop type catalog which does not have the atomic compare-and-swap locking operation for the metadata file that represents the current table state.
There's also an option to provide a locking mechanism to the hadoop catalog, such as zookeeper or etcd, but that's a somewhat advanced feature and would require that you write your own custom lock implementation.
So I still stand by the JDBC catalog as the easiest to get started with as most people can get an RDBMS from their cloud provider or spin one up pretty easily -- especially now that you will be able to efficiently move your tables to a new catalog with the code in the current master branch or in the next major Iceberg release, it's not something to worry about too much.
Looking at comments on this thread, Is version-hint.text file optional?
Yes, the version-hint.txt file is used by the hadoop type catalog to attempt to provide an authoritative location where the table's current top-level metadata file is located. So version-hint.txt is only found with hadoop catalog, as other catalogs store it in their own specific mechanism. A table in an RDBMS instance is used to store all of the catalogs "version hints" when using the JDBC catalog or even the Hive catalog, which is backed by Hive Metastore (and very typically an RDBMS). Other catalogs include the DynamoDB catalog.
If you have more questions, the Apache Iceberg slack is very active.
Feel free to check out the docker-spark-iceberg getting started tutorial (which I helped create), which includes Jupyter notebooks and a docker-compose setup.
It uses the JDBC catalog backed by Postgres. With that, you can get a feel for what the catalog is doing by ssh'ing into the containers and running psql commands, as well as looking at table data on your local machine. There's also some nice tutorials with sample data!
https://github.com/tabular-io/docker-spark-iceberg

Cloud SQL: export data to CSV periodically avoiding duplicates

I want to export the data from Cloud SQL (postgres) to a CSV file periodically (once a day for example) and each time the DB rows are exported it must not be exported in the next export task.
I'm currently using a POST request to perform the export task using cloud scheduler. The problem here (or at least until I know) is that it won't be able to export and delete (or update the rows to mark them as exported) in a single http export request.
Is there any possibility to delete (or update) the rows which have been exported automatically with any Cloud SQL parameter in the http export request?
If not, I assume it should be done it a cloud function triggered by a pub/sub (using scheduler to send data once a day to pub/sub) but, is there any optimal way to take all the ID of the rows retrieved from the select statment (which will be use in the export) to delete (or update) them later?
You can export and delete (or update) at the same time using RETURNING.
\copy (DELETE FROM pgbench_accounts WHERE aid<1000 RETURNING *) to foo.txt
The problem would be in the face of crashes. How can you know that foo.txt has been writing and flushed to disk, before the DELETE is allowed to commit? Or the reverse, foo.txt is partially (or fully) written, but a crash prevents DELETE from committing.
Can't you make the system idempotent, so that exporting the same row more than once doesn't create problems?
You could use a set up to achieve what you are looking for: 
1.Create a Cloud Function to extract the information from the database that subscribes to a Pub/Sub topic.
2.Create a Pub/Sub topic to trigger that function.
3.Create a Cloud Scheduler job that invokes the Pub/Sub trigger.
4.Run the Cloud Scheduler job.
5.Then create a trigger which activate another Cloud Function to delete all the data require from the database once the csv has been created.
Here I leave you some documents which could help you if you decide to follow this path.
Using Pub/Sub to trigger a Cloud Function:https://cloud.google.com/scheduler/docs/tut-pub-sub
Connecting to Cloud SQL from Cloud Functions:https://cloud.google.com/sql/docs/mysql/connect-functionsCloud
Storage Tutorial:https://cloud.google.com/functions/docs/tutorials/storage
Another method aside from #jjanes would be to partition your database by date. This would allow you to create an index on the date, making exporting or deleting a days entries very easy. With this implementation, you could also create a Cron Job that deletes all tables older then X days ago.
The documentation provided will walk you through setting up a Ranged partition
The table is partitioned into “ranges” defined by a key column or set of columns, with no overlap between the ranges of values assigned to different partitions. For example, one might partition by date ranges, or by ranges of identifiers for particular business objects.
Thank you for all your answers. There are multiples ways of doing this, so I'm goint to explain how I did it.
In the database I have included a column which contains the date when the data was inserted.
I used a cloud scheduler with the following body:
{"exportContext":{"fileType": "CSV", "csvExportOptions" :{"selectQuery" : "select \"column1\", \"column2\",... , \"column n\" from public.\"tablename\" where \"Insertion_Date\" = CURRENT_DATE - 1" },"uri": "gs://bucket/filename.csv","databases": ["postgres"]}}
This scheduler will be triggered once a day and it will export only the data of the previous day
Also, I have to noticed that in the query I used in cloud scheduler you can choose which columns you want to export, doing this you can avoid to export the column which include the Insertion_Date and use this column only an auxiliary.
Finally, the cloud scheduler will create automatically the csv file in a bucket

COPY command runs but no data being copied from Teradata (on-prem)

I am running into an issue where I have a set up a pipeline that gets a list of tables from Teradata using a Lookup activity and then passes those items to a ForEach activity that then copies the data in parallel and saves them as a gzipped file. The requirement is to essentially archive some tables that are no longer being used.
For this pipeline I am not using any partition options as most of the tables are small and I kept it to be flexible.
Pipeline
COPY activity within ForEach activity
99% of the tables ran without issues and were copied as gz files into blob storage, but two tables in particular run for long time (apprx 4 to 6 hours) without any of the data being written into a blob storage account.
Note that the image above says "Cancelled", but that was done by me. Before that I had a run time as described above, but still no data being written. This is affecting only 2 tables.
I checked with our Teradata team and those tables are not being used by any one (hence its not locked). I also looked at "Teradata Viewpoint" (admin tool) and looked at the query monitor and saw that the query was running on Teradata without issues.
Any insight would be greatly apreciated.
Onlooking issue mention it look the data size of table is more than a blob can store ( As you are not using any partition options )
Use partition option for optimize performance and hold the data
Link
Just in case someone else comes across this, the way I solved this was to create a new data store connection called "TD_Prod_datasetname". The purpose of this dataset is to not point to a specific table, but to just accept a "item().TableName" value.
This datasource contains two main values. 1st is the #dataset().TeradataName
Dataset property
I only came up with that after doing a little bit of digging in Google.
I then created a parameter called "TeradataTable" as String.
I then updated my pipeline. As above the main two activities remain the same. I have a lookup and then a ForEach Activity (where for each will get the item values):
However, in the COPY command inside the ForEach activity I updated the source. Instead of getting "item().Name" I am passing through #item().TableName:
This then enabled me to then select the "Table" option and because I am using Table instead of query I can then use the "Hash" partition. I left it blank because according to Microsoft documentation it will automatically find the Primary Key that will be used for this.
The only issue that I ran into when using this was that if you run into a table that does not have a Primary Key then this item will fail and will need to be run through either a different process or manually outside of this job.
Because of this change the previously files that just hung there and did not copy now copied successfully into our blob storage account.
Hope this helps someone else that wants to see how to create parallel copies using Teradata as a source and pass through multiple table values.

Loading DB2 table rows as Marklogic documents

Is there any tool to quickly convert a DB2 table rows into collection of XML documents that we can load to Marklogic?
DB2 supports the SQL/XML publishing extensions that were introduced in SQL:2003. These functions include XMLSERIALIZE, XMLELEMENT, XMLATTRIBUTE, and XMLFOREST, and are easily added to a SQL SELECT statement to produce a simple, well-formed XML document for each row in the result set. By writing queries that retrieve the table names and column layouts from DB2's catalog views, it is possible to automate the creation of the XML-publishing SELECT statements for a large number of tables.
One way of doing this would be to use the MLSQL toolkit ( http://developer.marklogic.com/code/mlsql ). It allows accessing relational databases from within your XQuery code in MarkLogic. Not sure how the returned data actually looks like, but it should be easy to process it within XQuery, and insert your data as XML into MarkLogic.
Just make sure not to try to load a million records in one statement, but instead try to spawn batches of lets say 1000 records at a time. Spawning will also allow for handling it with multiple threads, so should be faster for that reason too..
HTH!
Do you need to stream from DB2 to MarkLogic? Or can you temporarily dump all the documents to an intermediary filesystem and then read them in? If you can dump, then simply use some DB2 tooling (like #Fred's answer above) to export the rows to a bunch of XML documenets in a filesystem and use one of many methods for reading in a directory full of XML files into MarkLogic (like Information Studio (UI or apis), RecordLoader, and so on).
If you have don't want to store them in the filesystem as an intermediary, then you could write an InformationStudio plugin for MarkLogic that will pull out each row and insert a document into MarkLogic. You'd like need some web-service or rest endpoint that the plugin could call to extract the document data from DB2.
Alternatively, I suspect you could use the DB2 tooling (described by #Fred) that will let you execute some code per row of your table. If you can do that in Java (or .Net), then pull in the MarkLogic XCC APIs which will give you the ability to write documents into MarkLogic.

How can I audit with the Microsoft SQL Server LDF file?

We need an audit log in the product that we are creating. We use SQL Server 2008 R2. I learned that the LDF file keeps an complete log of all transactions that where made*.
I've found ApexSQL Log, this tools analyses the LDF file and provides a GUI. It's a great demonstration of what's possible. But it's expensive. More info: http://www.apexsql.com/sql_tools_log.aspx
Do you know of other programs that can analyse the LDF file's? Or perhaps other methods to provide audit-trail functionality? I know that it's possible to create triggers. But if it isn't necessary to add things to my database scheme then I would rather not do it.
*Only if you select the full recovery model.
How about the new Change Data Capture (CDC) functionality in R2. Doesnt that serve your purpose ?
When it comes to the information stored in an LDF file, make sure to form a full log chain. A log chain is a continuous sequence of transaction log backups. It starts with a full database backup followed by all subsequent log backups up through the auditing point. If it becomes broken, only the transactions in the logs up to the last backup before the missing one can be shown with full information (e.g. a schema and object name, or a row history)
Unlike INSERT and DELETE operations, which are fully logged in the LDF files, UPDATE operations are logged minimally – only the changes that are made are logged, but the old and new values are not. When logging UPDATE operations, SQL Server doesn’t log complete before and after row states but only the incremental change that occurred to the row. For example, if a word “log” was updated to word “blog” SQL Server will, in general case, only log an addition of letter “b” at index 0. This is enough for its purpose of ensuring ACID but not enough to easily show before and after states of the row. So, in order to understand what changed really occurred, you have to reconstruct the context in which the change occurred from the rest of transaction log and/or backup and online database data