Use Custom SQL OnModelCreating and/or immediately after - entity-framework-core

I wish to add custom SQL to my model creation.
(Right now I want to do that because I have used strongly typed ids in my domain model; so now ef core won't let me use .UseIdentityAlwaysColumn() on them. (As of 2021 this is a still-open issue). Even it it did, I also want to add specific Postgres sequence options).
A simple workaround is just a single line of Alter Table Alter Column... sql straight after the model creation.
I can see that MigrationBuilder.Sql() can do custom sql. So
Can ModelBuilder do custom Sql? I can't find it.
Alternatively, can I shoehorn a short Migration into the OnModelCreating()?
I wish to keep all the data definition code in sync in one place, not have most of it in OnModelCreating but bits of it elsewhere.

The short answer to both your questions is no. Or if I can use your phraseology, as of 2021 this is still not possible.
Seriously, EF Core is ORM, thus the main focus is on M(apping). Physical database attributes are not a priority, given the fact that one can use EF Core just to map to an exiting database (a.k.a. Database first). There is some limited support for indexes (not used by EF Core) and small set of other physical attributes, but no views, synonyms, triggers etc. The only SQL supported is in fact HasDefaultValueSql.
I wish to keep all the data definition code in sync in one place, not have most of it in OnModelCreating but bits of it elsewhere.
OnModelCreating is creating the mappings. At the time it is called, there is no real database involved. The model could be created for generating a migration, but that's only one (an completely optional) of the many usage scenarios. That's why you can't "execute" anything there. All you can do is to specify metadata (a.k.a. annotations) which then eventually are processed by the services responsible for different functionalities. Migration SQL generator is one of them, but it needs to understand these annotations when processing the corresponding operations. Which basically is the definition of supporting something or not.
In theory you could create your own annotations, provide custom metadata/fluent API for specifying them, but then you have also implement them for every database provider you want to support. This is a lot of work, practically impossible as every database provider implements the migration SQL generator for their specific attributes and DDL dialects.
So, whether what you wish it better or not, the practical approach would be to use what you got from ORM. Which currently is MigrationBuilder.Sql(). No more, no less. That's all. Period.
To recap shortly, if the questions are if there is some hidden "magic" way which you can't find, there isn't.

Related

How to stop EF Core from indexing all foreign keys

As documented in questions like Entity Framework Indexing ALL foreign key columns, EF Core seems to automatically generate an index for every foreign key. This is a sound default for me (let's not get into an opinion war here...), but there are cases where it is just a waste of space and slowing down inserts and updates. How do I prevent it on a case-by-case basis?
I don't want to wholly turn it off, as it does more good than harm; I don't want to have to manually configure it for all those indices I do want. I just want to prevent it on specific FKs.
Related side question: is the fact that these index are automatically created mentioned anywhere in the EF documentation? I can't find it anywhere, which is probably why I can't find how to disable it?
Someone is bound to question why I would want to do this... so in the interest of saving time, the OPer of the linked question gave a great example in a comment:
We have a People table and an Addresses table, for example. The
People.AddressID FK was Indexed by EF but I only ever start from a
People row and search for the Addresses record; I never find an
Addresses row and then search the People.AddressID column for a
matching record.
EF Core has a configuration option to replace one of its services.
I found replacing IConventionSetBuilder to custom one would be a much cleaner approach.
https://giridharprakash.me/2020/02/12/entity-framework-core-override-conventions/
If it is really necessary to avoid the usage of some foreign keys indices - as far as I know (currently) - in .Net Core, it is necessary to remove code that will set the indices in generated migration code file.
Another approach would be to implement a custom migration generator in combination with an attribute or maybe an extension method that will avoid the index creation. You could find more information in this answer for EF6: EF6 preventing not to create Index on Foreign Key. But I'm not sure if it will work in .Net Core too. The approach seems to be bit different, here is a MS doc article that should help.
But, I strongly advise against doing this! I'm against doing this, because you have to modify generated migration files and not because of not using indices for FKs. Like you mentioned in question's comments, in real world scenarios some cases need such approach.
For other people they are not really sure if they have to avoid the usage of indices on FKs and therefor they have to modify migration files:
Before you go that way, I would suggest to implement the application with indices on FKs and would check the performance and space usage. Therefor I would produce a lot test data.
If it really results in performance and space usage issues on a test or QA stage, it's still possible to remove indices in migration files.
Because we already chat about EnsureCreated vs migrations here for completeness further information about EnsureCreated and migrations (even if you don't need it :-)):
MS doc about EnsureCreated() (It will not update your database if you have some model changes - migrations would do it)
interesting too (even if for EF7) EF7 EnsureCreated vs. Migrate Methods
Entity Framework core 2.0 (the latest version available when the question was asked) doesn't have such a mechanism, but EF Core 2.2 just might - in the form of Owned Entity Types.
Namely, since you said:
" I only ever start from a People row and search for the Addresses record; I never find an Addresses row"
Then you may want to make the Address an Owned Entity Type (and especially the variant with 'Storing owned types in separate tables', to match your choice of storing the address information in a separate Addresses table).
The docs of the feature seem to say a matching:
"Owned entities are essentially a part of the owner and cannot exist without it"
By the way, now that the feature is in EF, this may justify why EF always creates the indexes for HasMany/HasOne. It's likely because the Has* relations are meant to be used towards other entities (as opposed to 'value objects') and these, since they have their own identity, are meant to be queried independently and allow accessing other entities they relate to using navigational properties. For such a use case, it would be simply dangerous use such navigation properties without indexes (a few queries could make the database slow down hugely).
There are few caveats here though:
Turning an entity into an owned one doesn't instruct EF only about the index, but rather it instructs to map the model to database in a way that is a bit different (more on this below) but the end effect is in fact free of that extra index on People.
But chances are, this actually might be the better solution for you: this way you also say that no one should query the Address (by not allowing to create a DbSet<T> of that type), minimizing the chance of someone using it to reach the other entities with these costly indexless queries.
As to what the difference is, you'll note that if you make the Address owned by Person, EF will create a PersonId column in the Address table, which is different to your AddressId in the People table (in a sense, lack of the foreign key is a bit of a cheat: an index for querying Person from Address is there, it's just that it's the primary key index of the People table, which was there anyways). But take note that this design is actually rather good - it not only needs one column less (no AddressId in People), but it also guarantees that there's no way to make orphaned Address record that your code will never be able to access.
If you would still like to keep the AddressId column in the Addresses, then there's still one option:
Just choose a name of AddressId for the foreign key in the Addresses table and just "pretend" you don't know that it happens to have the same values as the PersonId :)
If that option isn't funny (e.g. because you can't change your database schema), then you're somewhat out of luck. But do take note that among the Current shortcomings of EF they still list "Instances of owned entity types cannot be shared by multiple owners", while some shortcomings of the previous versions are already listed as addressed. Might be worth watching that space as, it seems to me, resolving that one will probably involve introducing the ability to have your AddressId in the People, because in such a model, for the owned objects to be shared among many entities the foreign keys would need to be sitting with the owning entities to create an association to the same value for each.
in the OnModelCreating override
AFTER the call to
base.OnModelCreating(modelBuilder);
add:
var indexForRemoval = modelBuilder.Entity<You_Table_Entity>().HasIndex(x => x.Column_Index_Is_On).Metadata;
modelBuilder.Entity<You_Table_Entity>().Metadata.RemoveIndex(indexForRemoval);
'''

Combine Code First & Database First In Single Model?

Is there a way to combine code-first and database-first in the same context? We are running into massive development-time performance problems when editing the EDMX file (it takes 1.5 minutes to save). I've moved our non-insert/update/delete UDFs/stored procs to some custom T4 templates that automatically generate model-first code, but I can't seem to get OnModelCreating to be called when EDMX is involved.
Other things we've considered, but won't work for one reason or another:
We can't (reasonably) separate our code to multiple contexts as there is a lot of overlap in our entity relationships. It also seems like quite a people who have gone this route regret it.
We tried having 2 different contexts, but there are quite a few joins between Entities & UDFs. This may be our last hope, but I'd REALLY like to avoid it.
We can't switch to Dapper since we have unfortunately made heavy use of IQueryable.
We tried to go completely to Code-First, but there are features that we are using in EDMX that aren't supported (mostly related to insert/update/delete stored procedure mapping).
Take a look at the following link. I answered another question in a similar fashion:
How to use Repository pattern using Database first approach in entity framework
As I mentioned in that post, I would personally try to switch to a Code First approach and get rid of the EDMX files as it is already deprecated and most importantly, the maintenance effort is considerable and much more complex compared with the Code First approach.
It is not that hard switching to Code First from a Model First approach. Some steps and images down below:
Display all files at the project level and expand the EDMX file. You will notice that the EDMX file has a .TT file which will have several files nested, the Model Context and POCO clases between them as .cs or .vb classes (depending on the language you are using). See image down below:
Unload the project, right click and then edit.
See the image below, notice the dependencies between the context and the TT file
Remove the dependencies, the xml element should look like the image below:
Repeat the procedure for the Model classes (The ones with the model definition)
Reload your project, remove the EDMX file(s)
You will probably need to do some tweeks and update names/references.
I did this a few times in the past and it worked flawlessly on production. You can also look for tools that do this conversion for you.
This might be a good opportunity for you to rethink the architecture as well.
BTW: Bullet point 4 shouldn't be a show stopper for you. You can map/use Stored Procedures via EF. Look at the following link:
How to call Stored Procedure in Entity Framework 6 (Code-First)?
It also seems like quite a people who have gone this route [multiple contexts] regret it.
I'm not one of them.
Your core problem is a context that gets too large. So break it up. I know that inevitably there will be entities that should be shared among several contexts, which may give rise to duplicate class names. An easy way to solve this is to rename the classes into their context-specific names.
For example, I have an ApplicationUser table (who hasn't) that maps to a class with the same name in the main context, but to a class AuthorizationUser in my AuthorizationContext, or ReportingUser in a ReportingContext. This isn't a problem at all. Most use cases revolve around one context type anyway, so it's impossible to get confused.
I even have specialized contexts that work on the same data as other contexts, but in a more economical way. For example, a context that doesn't map to calculated columns in the database, so there are no reads after inserts and updates (apart from identity values).
So I'd recommend to go for it, because ...
Is there a way to combine code-first and database-first in the same context?
No, there isn't. Both approaches have different ways of building the DbModel (containing the store model, the class model, and the mappings between both). In a generated DbContext you even see that an UnintentionalCodeFirstException is thrown, to drive home that you're not supposed to use that method.
mostly related to insert/update/delete stored procedure mapping
As said in another answer, mapping CUD actions to stored procedures is supported in EF6 code-first.
I got here from a link in your comment on a different question, where you asked:
you mentioned that code-first & database-first is "technically possible" could you explain how to accomplish that?
First, the context of the other question was completely different. The OP there was asking if it was possible to use both database-first and code-first methodologies in the same project, but importantly, not necessarily the same context. My saying that it was "technically possible" applies to the former, not the latter. There is absolutely no way to utilize both code-first and database-first in the same context. Actually, to be a bit more specific, let's say there's no way to utilize an existing database and also migrate that same database with new entities.
The terminology gets a bit confused here due to some unfortunate naming by Microsoft when EF was being developed. Originally, you had just Model-first and Database-first. Both utilized EDMX. The only difference was that Model-first would let you design your entities and create a database from that, while Database-first took an existing database and created entities from that.
With EF 4.1, Code-first was introduced, which discarded EDMX entirely and let you work with POCOs (plain old class objects). However, despite the name, Code-first can and always has been able to work with an existing database or create a new one. Code-first, then is really Model-first and Database-first, combined, minus the horrid EDMX. Recently, the EF team has finally taken it a step further and deprecated EDMX entirely, including both the Model-first and Database-first methodologies. It is not recommended to continue to use either one at this point, and you can expect EDMX support to be dropped entirely in future versions of Visual Studio.
With all that said, let's go with the facts. You cannot both have an existing database and a EF-managed database in a single context. You would at least need two: one for your existing tables and one for those managed by EF. More to the point, these two contexts must reference different databases. If there are any existing tables in an EF-managed database, EF will attempt to remove them. Long and short, you have to segregate your EF-managed stuff from your externally managed stuff, which means you can't create foreign keys between entities in one context and another.
Your only real option here is to just do everything "database-first". In other words, you'll have to just treat your database as existing and manually create new tables, alter columns, etc. without relying on EF migrations at all. In this regard, you should also go ahead and dump the EDMX. Generate all your entities as POCOs and simply disable the database initializer in your context. In other words, Code-first with an existing database. I have additional information, if you need it.
Thank you to everyone for the well thought out and thorough answers.
Many of these other answers assume that the stored procedure mappings in EF Code-First work the same, but they do not. I'm a bit fuzzy on this as it's been about 6 months since I looked at it, but I believe as of EF 6.3 code first stored procedures require that you pass every column from your entity to your insert/update stored procedure and that you only pass the key column(s) to your delete procedure. There isn't an option to pick and choose which columns you can pass. We have a requirement to maintain who deleted a record so we have to pass some additional information besides just a simple key.
That being said, what I ended up doing was using a T4 template to automatically generate my EDMX/Context/Model files from the database (with some additional meta-data). This took our developer time experience down from 1.5 minutes to about 5 seconds.
My hope is EF stored procedure mappings will be improved to achieve parody with EDMX and I can then just code-generate the Code-First mappings and remove the EDMX generation completely.

F# mapping data entities to domain entities; what is meant by "using objects for persistance"?

In my spare time, I'm trying restart my effort to learn F#. I'm doing so by trying to create a simple application that will allow me to analyze my financial transactions.
My first attempt at creating this application failed due to the persistence step. I used SQL and the EntityFramework package, but the latter generated database entities, which I did not want to use throughout my application since they're all mutable (I think..). Instead I had to map these database entities to domain entities. Much manual glue code later it worked....until I found a bug and was forced to replace much of that glue code. That was the tipping point that made me quit.
On SO I found a question describing my situation, e.g. Saving F# types to a database. Mark Seeman suggested that the pain of mapping can be overcome if I'd not use objects for persistence. At work I have recently been introduced to MongoDb, which at least saves me the pain of mapping from database entities to domain entities. These entities all need some ID, and I chose to use an ObjectId from Mongo. Ooops, there comes the deja vu, in order not to have my domain entities being dependent on Mongo, I will once more have to create database and domain entities....as well as the mapping. Bah & Ugh.
In C# I'm used to do such mapping with tools like Automapper, but they don't really work for special F# types. So now I'm wondering what Mark Seeman ment by "using objects for persistance". How is this solved in F#? So far I haven't been able to fine more info on this topic besides the aforementioned question on SO.

Entity Framework code first - development strategies

Working on a brand new project from the ground up. That means the data model is in a constant flux, doubly so because things are, inevitably, not as well planned as they should be. Model classes are being created and changed fairly regularly.
The plan was to use the latest version of EF with all the neat code-first stuff in it. But we're constantly tripping over the limitations the framework has in terms of adding or updating tables. The initialization options seem to allow only the complete deletion and re-creation of the database, which isn't really ideal.
I've had a look at the migrations. But this seems a sledgehammer to crack a nut: we don't need to detail every single small change and update with a new migration scaffold.
Are there some better strategies to deal with this? For instance, I started writing some unit tests to pre-populate one of the contexts with some test data, but because this causes the whole Db to drop and re-create, it causes problems with all the other contexts. Or perhaps making use of a custom initialiser to seed the data for us? How can we easily exclude these in production code?
We're also wondering about perhaps abandoning code-first and going back to EDMX diagrams. At least that way changes result in updated SQL commands which can be run directly against the database.
Any suggestions gratefully received.
I think, imho, that:
as the database schema must at least match your model you should/must detail every single change, and code first migration allows that and trace the changes over time
code first migration also allows to migrate the database schema for you
code first migration also allows you to produce sql that allows you to migrate the schema
For these reasons code first is as good (if not better) as the edmx approach
Please take few minutes to implement http://msdn.microsoft.com/en-us/data/jj591621.aspx
One other point, always imho and in a perfect world, if you unit test the business of you model you should not need the DAL, use generic collection. Be aware of different comportement of linq to object vs linq to entities, for example concerning the case sensitivity.

Replacements to hand-rolled ADO.NET POCO mapping?

I have written a wrapper around ADO.NET's DbProviderFactory that I use extensively throughout my applications. I also have written a lot of code that maps IDataReader rows to POCOs. However, as I have tons of classes the whole thing is getting to be a pain in the ass to maintain.
I have been looking at replacing the whole she-bang with a micro-orm like Petapoco. I have a few queries though:
I have lots of POCOs that contain other POCOs in them as properties. How well does the Petapoco support this?
Should I use a ORM like Massive or Simple.Data that returns a dynamic object and map that to a POCO?
Are there any approaches I can take to the whole mapping of rows to POCOs? I can't really use convention-based tools as my database isn't particularly consistent in how it is designed.
How about using a text templating/code generator to build out a lightweight persistence layer? I have a battle-hardened open source project called TextMetal to generate the necessary persistence layer based on tried and true architectural decisions. The only lacking thing is object to object relations but it does support query expressions and works well with poorly designed data schemas.
You can see a real world project that uses the above tool call Can Do It For.
Feel free to ask me about any design decisions once you take a look-sse.
Simple.Data automagically casts its dynamic type to static types. It will map nested properties as long as they have been eager-loaded using the .With method. So for example
Customer customer = db.Customer.WithOrders().Get(42);
would populate the Orders property of the customer object.
Could you use QueryFirst, or modify it? It takes your sql and wraps it in vanilla ADO code, generated at design time. You get fresh POCOs from your result schema every time you save your file. Additionally, you can choose to test all queries and regenerate all wrappers via the option in the tools menu. It's dependent on Sql Server and SqlClient, so unless you do some modification, you'll lose DbProviderFactory.