Replacements to hand-rolled ADO.NET POCO mapping? - ado.net

I have written a wrapper around ADO.NET's DbProviderFactory that I use extensively throughout my applications. I also have written a lot of code that maps IDataReader rows to POCOs. However, as I have tons of classes the whole thing is getting to be a pain in the ass to maintain.
I have been looking at replacing the whole she-bang with a micro-orm like Petapoco. I have a few queries though:
I have lots of POCOs that contain other POCOs in them as properties. How well does the Petapoco support this?
Should I use a ORM like Massive or Simple.Data that returns a dynamic object and map that to a POCO?
Are there any approaches I can take to the whole mapping of rows to POCOs? I can't really use convention-based tools as my database isn't particularly consistent in how it is designed.

How about using a text templating/code generator to build out a lightweight persistence layer? I have a battle-hardened open source project called TextMetal to generate the necessary persistence layer based on tried and true architectural decisions. The only lacking thing is object to object relations but it does support query expressions and works well with poorly designed data schemas.
You can see a real world project that uses the above tool call Can Do It For.
Feel free to ask me about any design decisions once you take a look-sse.

Simple.Data automagically casts its dynamic type to static types. It will map nested properties as long as they have been eager-loaded using the .With method. So for example
Customer customer = db.Customer.WithOrders().Get(42);
would populate the Orders property of the customer object.

Could you use QueryFirst, or modify it? It takes your sql and wraps it in vanilla ADO code, generated at design time. You get fresh POCOs from your result schema every time you save your file. Additionally, you can choose to test all queries and regenerate all wrappers via the option in the tools menu. It's dependent on Sql Server and SqlClient, so unless you do some modification, you'll lose DbProviderFactory.

Related

How do we switch from Telerik Open Access to anything else?

Our company has been using Telerik Open Access for years. We have multiple projects using it including some in development and some in production that need updated. Because Telerik no longer updates or supports Open Access, we are having a variety of problems. We've got users that have to go to another work station because we can't get Open Access on their computers and we've got projects where we can't add or update tables because the visual designer doesn't work in modern Visual Studio versions. So my question is, how do we convert these and what do we convert these to?
I've heard of Microsoft Entities Framework and we used to just call stored procedures instead of having a separate data project. Obviously our clients aren't going to pay us for hours to switch so we need something that works quick. How do we convert our existing Telerik Open Access project to Microsoft Entities Framework, straight SQL queries, or some other data layer option?
Here's an example of what we have currently.
A separate Visual Studio project that acts as our data layer where all the code was created by Telerik Open Access's visual designer:
We then have a DataAccess.cs class in our main project that creates the instance of the data layer:
Then we call it by using linq statements in the main project:
I don't know OA hands-on, so I can only put my two-cents in.
I'm afraid this isn't going to be be an easy transition. I've yet to see the first seamless transition from one data layer implementation to another (and I've seen a few). The main cause for this is that IQueryable is a leaky abstraction. That is, the data layer exposes IQueryables, but
it doesn't support all features of the interface, and
it adds its own features, and
it's got its own interpretation of how to implement the features that are supported.
This means that if you're going to port your data layer to EF, you may notice that some LINQ queries throw runtime errors because they contain unsupported .Net methods/properties (for instance DateTime.Date), or perform worse -- or better, or return data in subtly different shapes or sorting orders.
Some important OA features that are missing in EF:
Runtime mappings (EF's mapping is static)
Bulk update/delete functions (with EF: only by using third-party libraries)
Second-leve cache
Profiler and Tuning Advisor
Streaming of large objects
Mixing database-side and client-side evaluation of LINQ queries (EF6: only db-evaluation)
On the other hand, the basic architectures of OA and EF don't seem to be too different. They both -
support POCOs
work with simple navigation properties
have a fluent mapping API
support LINQ through IQueryable<T>, where T is an entity class.
most importantly: both have revolve around the Unit of Work and Repository patterns. (For EF: DbContext and DbSet, respectively)
All-in-all it's goinig to be a delicate process of converting, trying and testing. One good thing is that your current DAL is already abstracted to a certain extent. Another is that the syntax doesn't even look too different. Where you have ...
dbContext.Add(newDockReport);
dbContext.SaveChanges();
... using EF this would become ...
dbContext.DockReports.Add(newDockReport);
dbContext.SaveChanges();
With EF-core it wouldn't even have to change one bit.
But that's another important choice to make: EF6 or EF-core? EF6 is stable, mature, feature-rich, but at the end of its life cycle (a phrase you've probably come to hate by now). EF-core, on the other hand, is the future, but is presently struggling to get bug-free in its major functions, not yet as feature-rich as EF6 (and some features will never return, although other new features are great improvements compared to EF6). At the moment, I'd be wary of using EF-core for enterprise applications, but I'm pretty sure that a year from now this is not an issue any more.
Whichever way you go, I'd start the process by writing large amounts of integration tests, if you didn't do so already. The advantage of integration tests is that you can avoid the hassle of mocking either framework first (which isn't trivial).
I have never heard of a tool that can do that.Expect it to take time.
You have to figure how to do it by yourself :
( for the exact safer way to migrate )
1rst you must have a simple page that use your DataLayer it will be your test page. A simple one that you can adapt the LinQ logic .
Add a LinQ to SQL Class, Right click> Add > LinQ to SQL Class.
Drop your table for this page only the usefull one, put the link if needed.
In the test page create a new data context of the linQtoSql.
Use it fixing the type and rename what have to be rename.
Fix error till it compile.
Stock coffee and anything that can boost your brain.
Add table to your context to match the one you had in telerik data access.
Debug for days.
Come back with new question on how to fix a new issue twice a day.
To help with the dbContext.Add() difference between the 2 frameworks you could use this extension in the EF 6.x :
public static void Add<T>(this DbContext db, T entityToCreate) where T : class
{
db.Set<T>().Add(entityToCreate);
db.SaveChanges();
}
then you could do :
db.Add(obj);
See Gert Arnold answer : In Entity Framework, how do I add a generic entity to its corresponding DbSet without a switch statement that enumerates all the possible DbSets?

F# mapping data entities to domain entities; what is meant by "using objects for persistance"?

In my spare time, I'm trying restart my effort to learn F#. I'm doing so by trying to create a simple application that will allow me to analyze my financial transactions.
My first attempt at creating this application failed due to the persistence step. I used SQL and the EntityFramework package, but the latter generated database entities, which I did not want to use throughout my application since they're all mutable (I think..). Instead I had to map these database entities to domain entities. Much manual glue code later it worked....until I found a bug and was forced to replace much of that glue code. That was the tipping point that made me quit.
On SO I found a question describing my situation, e.g. Saving F# types to a database. Mark Seeman suggested that the pain of mapping can be overcome if I'd not use objects for persistence. At work I have recently been introduced to MongoDb, which at least saves me the pain of mapping from database entities to domain entities. These entities all need some ID, and I chose to use an ObjectId from Mongo. Ooops, there comes the deja vu, in order not to have my domain entities being dependent on Mongo, I will once more have to create database and domain entities....as well as the mapping. Bah & Ugh.
In C# I'm used to do such mapping with tools like Automapper, but they don't really work for special F# types. So now I'm wondering what Mark Seeman ment by "using objects for persistance". How is this solved in F#? So far I haven't been able to fine more info on this topic besides the aforementioned question on SO.

Rules of thumbs for writing "queries" using ADO.NET Entity Framework

I’m currently working on a prototype of a medium size web application, and I thought that it would be good to also experiment with Entity Framework. The problem is that the major part of the application is not the data layer and logic, and so that I don't have much time to play with Entity Framework. On the other hand, the database schema is quite simple.
One of the problems I’m facing is that I cannot find a consistent way to "write queries". As far as I can tell, there are four "interfaces" for the job:
LINQ to Entities
LINQ to Entities using LINQ extension methods
Entity SQL
Query builder
OK, the first two are essentially the same, but it’s good to use just one for maintenance and consistency.
I’m mostly puzzled by the fact that none of them seems to be complete and the most general. I often find myself cornered and using some ugly looking combination of several of them. My guess is that Entity SQL is the most general one, but writing queries using strings feels like a step back. The main reason I’m experimenting with something like Entity Framework is that I like the compile time checking.
Some other random thought / issues:
I often also use the ObjectQuery.Include() method, but again it takes a string. Is this the only way?
When to use ObjectQuery.Execute() (vs. ToList())? Does it actually execute the query?
Should execute queries as soon as possible (e.g. using ToList()) or should I not care just let leave the execution for the first enumeration which gets in the way?
Are ObjectQuery.Skip() and ObjectQuery.Take() available only as extension methods? Is there a better way to do paging? It’s 2009 and almost every web application deals with paging.
Overall, I understand there are many difficulties when implementing an ORM, and often one has to compromise. On the other hand, the direct database access (e.g. ADO.NET) is plain and simple and has well defined interface (tabular results, data readers), so all code - no matter who and when writes it - is consistent. I don’t want to faced with too many choices whenever writing a database query. It’s too tedious and more than likely different developers will come up with different ways.
What are your rules of thumbs?
I use LINQ-to-Entities as much as possible. I also try and formalise to the lambda-form, as opposed to the extended SQL-style syntax. I have to admit to have had problems enforcing relationships and making compromises on efficiency just to expedite my coding of our application (eg. Master->Child tables may need to be manually loaded) but all in all, EF is a good product.
I do use EF's .Include() method for lazy-loading, which as you say, does require a string input. I find no problem with this, other than that of identifying the string to use which is relatively simple. I guess if you're keen on compile-time checking of such relations, a model similar to: Parent.GetChildren() might be more appropriate.
My application does require some "dynamic" queries to be performed, though. I have two ways of meeting this:
a) I create a mediator object, eg. ClientSearchMediator, which "knows" how to search for clients by name, etc. I can then put this through a SearchHandler.Search(ISearchMediator[] mediators) call (for example). This can be used to target specific data structures and sort results accordingly using LINQ-to-Entities.
b) For a looser experience, possibly as a result of a user designing their own query (using high level tools our application provides), eSQL is ideal for this purpose. It can be made to be injection-safe.
I don't have enough knowledge to address all of this, but I'll at least take a few stabs.
I don't know why you think ADO.NET is more consistent than Entity Framework. There are many different ways to use ADO.NET and I've definitely seen inconsistency within a single code base.
Entity Framework is currently a 1.0 release and it suffers from many 1.0 type problems (incomplete & inconsistent API, missing features, etc.).
In regards to Include, I assume you are referring to eager loading. Multiple people (outside of Microsoft) have developed solutions for getting "type safe" includes (try googling something like: Entity Framework ObjectQueryExtension Include). That said, Include is more of a hint than anything. You can't force eager loading and you have to always remember to call the IsLoaded() method to see if your request was fulfilled. As far as I know, the way "Include" works is not changing at all in the next version of Entity Framework (4.0 - to ship with VS 2010).
As far as executing the Linq query as soon as it's built vs. the last possible moment, that decision is situational. Personally, I would probably execute it as soon as it's built for the most part unless there was a compelling reason not to, but I can see other people going the opposite direction.
There are more mature ORMs on the market and Entity Framework isn't necessarily your best option. For the most part, you can bend Entity Framework to your will, but you may end up rolling your own implementation of features that come out of the box with other ORMs.

What are the pros/cons of returning POCO objects from a Repository rathen than EF Entities?

Following the way Rob does it, I have the classes that are generated by the Linq to SQL wizard, and then a copy of those classes that are POCOs. In my repositories I return these POCOs rather than the Linq to SQL models:
return from c in DataContext.Customer
where c.ID == id
select new MyPocoModels.Customer { ID = c.ID, Name = c.Name }
I understand that the benefit of this is that the POCO models can be instantiated easier so this will make my code more testable.
I'm now moving from Linq to SQL over to Entity Framework and I'm about half way through an EF book. It seems there's a lot of goodness I'm going to lose out on by returning POCOs from my repositories rather than the EF entities.
I still haven't really embraced unit testing, so I feel like I'm wasting a lot of time creating these extra POCOs and writing the code to populate them, when all I appear to be gaining is testable code, yet I'm also gonna lose out on a lot of the benefits of the EF by not being able to track my objects.
Does anyone have any advice for a relative newb to all this ORM/Repository stuff?
Anthony
Another reason people don't like the auto-generated objects (in LINQ to SQL for example) is because of their built-in "magic".
Usually the magic is invisible and you never notice it, but when you try to do things like serialize one of those objects and then deserialize it (for example when using web services) its internal connection to the data source is broken and special hacks need to be employed to "put the magic back in".
With POCOs, you don't have to worry about those sorts of things and can get a better separation between your data and service layers. The downside of course is that you have to write lots of boring POCO -> magic object and magic object -> POCO conversion code. But in the end I think it's usually worth it, especially for large or complex projects.
The main reason is that a lot of people like to develop their model with a specific mindset: like DDD for instance. They might want to use a specific pattern (like Spec or State) for things like statuses (instead of enums) - or you might want to use a Factory for instantiation.
OO breaks when you try to use Tables as Objects when things get more complex. Simple sites work OK - but when you get to big big things, it gets ugly.
So - as always - it depends what you think your project will turn into.
My experience is that when you start writting some complex queries .Include method is worthless and you will find yourself either:
a) Writting a lot of queries to get the data you want or
b) abusing of annonymous types to load the data in a single query and then writting a lot of code just to pass that data to your entities.
POCOs are the way to go, IMHO.

Entity Framework as Repository and UnitOfWork?

I'm starting a new project and have decided to try to incorporate DDD patterns and also include Linq to Entities. When I look at the EF's ObjectContext it seems to be performing the functions of both Repository and Unit of Work patterns:
Repository in the sense that the underlying data level interface is abstracted from the entity representation and I can request and save data through the ObjectContext.
Unit Of Work in the sense that I can write all my inserts/updates to the objectContext and execute them all in one shot when I do a SaveChanges().
It seems redundant to put another layer of these patterns on top of the EF ObjectContext? It also seems that the Model classes can be incorporated directly on top of the EF generated entities using 'partial class'.
I'm new at DDD so please let me know if I'm missing something here.
I don't think that the Entity Framework is a good implementation of Repository, because:
The object context is insufficiently abstract to do good unit testing of things which reference it, since it is bound to the DB access. Having an IRepository reference instead works much better for creating unit tests.
When a client has access to the ObjectContext, the client can do pretty much anything it cares to. The only real control you have over this at all is to make certain types or properties private. It is hard to implement good data security this way.
On a non-trivial model, the ObjectContext is insufficiently abstract. You may, for example, have both tables and stored procedures mapped to the same entity type. You don't really want the client to have to distinguish between the two mappings.
On a related note, it is difficult to write comprehensive and well-enforce business rules and entity code. Indeed, whether or not it this is even a good idea is debatable.
On the other hand, once you have an ObjectContext, implementing the Repository pattern is trivial. Indeed, for cases that are not particularly complex, the Repository is something of a wrapper around the ObjectContext and the Entity types.
I would say that you should look at the ObjectContext as your UnitOfWork, and not as a repository.
An ObjectContext cannot be a repository -imho- since it is 'to generic'.
You should create your own Repositories, which have specialized methods (like GetCustomersWithGoldStatus for instance) next to the regular CRUD methods.
So, what I would do, is create repositories (one for each aggregate-root), and let those repositories use the ObjectContext.
I like to have a repository layer for the following reasons:
EF gotcha's
When you look at some of the current tutorials on EF (Code First version), it is apparent there's a number of gotcha's to be handled, particularly around object graphs (entities containing entities) and disconnected scenarios. I think a repository layer is great for wrapping these up in one place.
A clear picture of data access mechanisms
A repository gives a specific picture as to how the BL is accessing and updating the data store. It exposes methods that have a clear single purpose, and can be tested independently of the BL. Standard example from the textbooks, Find() to find a single entity. A more application specific example, Clear() to clear down a db table.
A place for optimizations
Inevitably you come up against performance hits when using vanilla EF. I use the repository to hide the optimization mechanisms from the BL.
Examples,
GetKeys() to project cached keys from the tables (for Insert/Update decisions). The reading of key only is faster and uses less memory than reading the full entity.
Bulk load via SqlBulkCopy. EF will insert by individual SQL statements. If you want a single statement to insert multiple rows, SqlBulkCopy is a good mechanism. The repository encapsulates this and provides metadata for SqlBulkCopy. As well as the Insert method, you need a StartBatch() and EndBatch() method, which is also an argument for a UnitOfWork layer.