Google DATA FUSION CPU - google-cloud-data-fusion

I have a problem when I try to deploy a downstream pipeline, the error from logs i receive is this:
PROVISION task failed in REQUESTING_CREATE state for program run program_run:default.ListaNomi1_v3.-SNAPSHOT.workflow.DataPipelineWorkflow.182bbf2c-576b-11ec-8095-da8d4f8ab0b3 due to Dataproc operation failure: INVALID_ARGUMENT: Multiple validation errors: - Insufficient 'CPUS' quota. Requested 10.0, available 3.0. - Insufficient 'CPUS_ALL_REGIONS' quota. Requested 10.0, available 7.0. - Insufficient 'IN_USE_ADDRESSES' quota. Requested 3.0, available 1.0. - This request exceeds CPU quota. Some things to try: request fewer workers (a minimum of 2 is required), use smaller master and/or worker machine types (such as n1-standard-2)..
I'm trying to change the worker and Master nodes configuration but it always Fail,
I can't modify the quota because I m not the leader and he says that can't change.

To process data with Cloud Data Fusion you need a cluster.
Two options are:
Ephemeral cluster when it's created for each pipeline run. This is the one you are trying to use, but it needs compute quotas to create a cluster
Static cluster (Existing Dataproc). In this case the cluster is created beforehand and you simply "points" your Pipeline to use it by creating and selection provisioning profile. This can be an option to prevent quota issues during pipeline start. But such a static cluster would incur costs while it's running, even without any jobs.

Related

Airflow fault tolerance

I have 2 questions:
first, what does it mean that the Kubernetes executor is fault tolerance, in other words, what happens if one worker nodes gets down?
Second question, is it possible that the whole Airflow server gets down? if yes, is there a backup that runs automatically to continue the work?
Note: I have started learning airflow recently.
Thanks in advance
This is a theoretical question that faced me while learning apache airflow, I have read the documentation
but it did not mention how fault tolerance is handled
what does it mean that the Kubernetes executor is fault tolerance?
Airflow scheduler use a Kubernetes API watcher to watch the state of the workers (tasks) on each change in order to discover failed pods. When a worker pod gets down, the scheduler detect this failure and change the state of the failed tasks in the Metadata, then these tasks can be rescheduled and executed based on the retry configurations.
is it possible that the whole Airflow server gets down?
yes it is possible for different reasons, and you have some different solutions/tips for each one:
problem in the Metadata: the most important part in Airflow is the Metadata where it's the central point used to communicate between the different schedulers and workers, and it is used to save the state of all the dag runs and tasks, and to share messages between tasks, and to store variables and connections, so when it gets down, everything will fail:
you can use a managed service (AWS RDS or Aurora, GCP Cloud SQL or Cloud Spanner, ...)
you can deploy it on your K8S cluster but in HA mode (doc for postgresql)
problem with the scheduler: the scheduler is running as a pod, and the is a possibility to lose depending on how you deploy it:
Try to request enough resources (especially memory) to avoid OOM problem
Avoid running it on spot/preemptible VMs
Create multiple replicas (minimum 3) for the scheduler to activate HA mode, in this case if a scheduler gets down, there will be other schedulers up
problem with webserver pod: it doesn't affect your workload, but you will not be able to access the UI/API during the downtime:
Try to request enough resources (especially memory) to avoid OOM problem
It's a stateless service, so you can create multiple replicas without any problem, if one gets down, you will access the UI/API using the other replicas

In Kubernetes, are resource quotas a good way to throttle how much CPU and memory is allowed for running jobs at a given time?

Suppose I have an API that allows users to create jobs (V1Jobs) in Kubernetes. What I would like is for the user to be able to submit as many jobs as they want without a failed response from the API but to have Kubernetes queue/throttle the jobs until there are enough available resources in the given namespace. For example, suppose I create a resource quota and specify a limit of 1cpu and 1Gi memory. Then suppose a user submits 100 1cpu/1Gi jobs. I'd like Kubernetes to process one at a time until they are complete. In other words running 100 jobs one at a time. Is creating the resource quota and letting the job-controller/scheduler handle the throttling the right way to go or would there be benefits to handle tracking the cluster usage externally (in an application) and only submit/create the V1Jobs to the API once there is capacity in the namespace?
ResourceQuotas are a good start, limiting the amount of resources a that may be used within a namespace, or by resources matching an expression.
It would indeed prevent the scheduler from creating Pods that would exceed your quota limitations. The API would still accept new Job objects posted by clients. If you have N Jobs requesting 1 CPU/1G RAM, while your quota only allows for less than 2CPU/2G RAM to be used, you should see those jobs running sequentially.
Though it could still make sense to track how many pending/running jobs you have in your namespace, as this could show there are currently too many jobs to run with your current quota configuration. The kube-state-metrics exporter from Prometheus would gather the metrics you need for this, you'ld find sample dashboards in Grafana, alerting rules over there.
If there's a risk some containers would start without passing proper cpu or memory resources requests / limits, you could also look into LimitRanges, forcing some defaults.
Resource quotas are applied at the namespace level. For containers resourceRequests and resourceLimits are available to specify the min and Max cpu and memory respectively. Setting resourceRequests and resourceLimits, allows the job to use only the specified cpu and memory range. This way we can schedule more than one job in a namespace with both resourceQuotas at namespace level and resourceRequests and resourceLimits at jobs.
Also, there is no harm in letting the scheduler takes care of not scheduling jobs when there is no resource.

Airflow Memory Error: Task exited with return code -9

According to both of these Link1 and Link2, my Airflow DAG run is returning the error INFO - Task exited with return code -9 due to an out-of-memory issue. My DAG run has 10 tasks/operators, and each task simply:
makes a query to get one of my BigQuery tables, and
writes the results to a collection in my Mongo database.
The size of the 10 BigQuery tables range from 1MB to 400MB, and the total size of all 10 tables is ~1GB. My docker container has default 2GB of memory and I've increased this to 4GB, however I am still receiving this error from a few of the tasks. I am confused about this, as 4GB should be plenty of memory for this. I am also concerned because, in the future, these tables may become larger (a single table query could be 1-2GB), and I'd like to avoid these return code -9 errors at that time.
I'm not quite sure how to handle this issue, since the point of the DAG is to transfer data from BigQuery to Mongo daily, and the queries / data in-memory for the DAG's tasks is necessarily fairly large then, based on the size of the tables.
As you said, the error message you get corresponds to an out of memory issue.
Referring to the official documentation:
DAG execution is RAM limited. Each task execution starts with two
Airflow processes: task execution and monitoring. Currently, each node
can take up to 6 concurrent tasks. More memory can be consumed,
depending on the size of the DAG.
High memory pressure in any of the GKE nodes will lead the Kubernetes scheduler to evict pods from nodes in an attempt to relieve that pressure. While many different Airflow components are running within GKE, most don't tend to use much memory, so the case that happens most frequently is that a user uploaded a resource-intensive DAG. The Airflow workers run those DAGs, run out of resources, and then get evicted.
You can check it with following steps:
In the Cloud Console, navigate to Kubernetes Engine -> Workloads
Click on airflow-worker, and look under Managed pods
If there are pods that show Evicted, click each evicted pod and look for the The node was low on resource: memory message at the top of the window.
What are the possible ways to fix OOM issue?
Create a new Cloud Composer environment with a larger machine type than the current machine type.
Ensure that the tasks in the DAG are idempotent, which means that the result of running the same DAG run multiple times should be the same as the result of running it once.
Configure task retries by setting the number of retries on the task - this way when your task gets -9'ed by the scheduler it will go to up_for_retry instead of failed
Additionally you can check the behavior of CPU:
In the Cloud Console, navigate to Kubernetes Engine -> Clusters
Locate Node Pools at the bottom of the page, and expand the default-pool section
Click the link listed under Instance groups
Switch to the Monitoring tab, where you can find CPU utilization
Ideally, the GCE instances shouldn't be running over 70% CPU at all times, or the Composer environment may become unstable during resource usage.
I hope you find the above pieces of information useful.
I am going to chunk the data so that less is loaded into any 1 task at any given time. I'm not sure yet whether I will need to use GCS/S3 for intermediary storage.

How to use the Python Kubernetes client in a way resilient to GKE Kubernetes Master disruptions?

We sometimes use Python scripts to spin up and monitor Kubernetes Pods running on Google Kubernetes Engine using the Official Python client library for kubernetes. We also enable auto-scaling on several of our node pools.
According to this, "Master VM is automatically scaled, upgraded, backed up and secured". The post also seems to indicate that some automatic scaling of the control plane / Master VM occurs when the node count increases from 0-5 to 6+ and potentially at other times when more nodes are added.
It seems like the control plane can go down at times like this, when many nodes have been brought up. In and around when this happens, our Python scripts that monitor pods via the control plane often crash, seemingly unable to find the KubeApi/Control Plane endpoint triggering some of the following exceptions:
ApiException, urllib3.exceptions.NewConnectionError, urllib3.exceptions.MaxRetryError.
What's the best way to handle this situation? Are there any properties of the autoscaling events that might be helpful?
To clarify what we're doing with the Python client is that we are in a loop reading the status of the pod of interest via read_namespaced_pod every few minutes, and catching exceptions similar to the provided example (in addition we've tried also catching exceptions for the underlying urllib calls). We have also added retrying with exponential back-off, but things are unable to recover and fail after a specified max number of retries, even if that number is high (e.g. keep retrying for >5 minutes).
One thing we haven't tried is recreating the kubernetes.client.CoreV1Api object on each retry. Would that make much of a difference?
When a nodepool size changes, depending on the size, this can initiate a change in the size of the master. Here are the nodepool sizes mapped with the master sizes. In the case where the nodepool size requires a larger master, automatic scaling of the master is initiated on GCP. During this process, the master will be unavailable for approximately 1-5 minutes. Please note that these events are not available in Stackdriver Logging.
At this point all API calls to the master will fail, including the ones from the Python API client and kubectl. However after 1-5 minutes the master should be available and calls from both the client and kubectl should work. I was able to test this by scaling my cluster from 3 node to 20 nodes and for 1-5 minutes the master wasn't available .
I obtained the following errors from the Python API client:
Max retries exceeded with url: /api/v1/pods?watch=False (Caused by NewConnectionError('<urllib3.connection.VerifiedHTTPSConnection object at>: Failed to establish a new connection: [Errno 111] Connection refused',))
With kubectl I had :
“Unable to connect to the server: dial tcp”
After 1-5 minutes the master was available and the calls were successful. There was no need to recreate kubernetes.client.CoreV1Api object as this is just an API endpoint.
According to your description, your master wasn't accessible after 5 minutes which signals a potential issue with your master or setup of the Python script. To troubleshoot this further on side while your Python script runs, you can check for availability of master by running any kubectl command.

AWS EB should create new instance once my docker reached its maximum memory limit

I have deployed my dockerized micro services in AWS server using Elastic Beanstalk which is written using Akka-HTTP(https://github.com/theiterators/akka-http-microservice) and Scala.
I have allocated 512mb memory size for each docker and performance problems. I have noticed that the CPU usage increased when server getting more number of requests(like 20%, 23%, 45%...) & depends on load, then it automatically came down to the normal state (0.88%). But Memory usage keeps on increasing for every request and it failed to release unused memory even after CPU usage came to the normal stage and it reached 100% and docker killed by itself and restarted again.
I have also enabled auto scaling feature in EB to handle a huge number of requests. So it created another duplicate instance only after CPU usage of the running instance is reached its maximum.
How can I setup auto-scaling to create another instance once memory usage is reached its maximum limit(i.e 500mb out of 512mb)?
Please provide us a solution/way to resolve these problems as soon as possible as it is a very critical problem for us?
CloudWatch doesn't natively report memory statistics. But there are some scripts that Amazon provides (usually just referred to as the "CloudWatch Monitoring Scripts for Linux) that will get the statistics into CloudWatch so you can use those metrics to build a scaling policy.
The Elastic Beanstalk documentation provides some information on installing the scripts on the Linux platform at http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-containers-cw.html.
However, this will come with another caveat in that you cannot use the native Docker deployment JSON as it won't pick up the .ebextensions folder (see Where to put ebextensions config in AWS Elastic Beanstalk Docker deploy with dockerrun source bundle?). The solution here would be to create a zip of your application that includes the JSON file and .ebextensions folder and use that as the deployment artifact.
There is also one thing I am unclear on and that is if these metrics will be available to choose from under the Configuration -> Scaling section of the application. You may need to create another .ebextensions config file to set the custom metric such as:
option_settings:
aws:elasticbeanstalk:customoption:
BreachDuration: 3
LowerBreachScaleIncrement: -1
MeasureName: MemoryUtilization
Period: 60
Statistic: Average
Threshold: 90
UpperBreachScaleIncrement: 2
Now, even if this works, if the application will not lower its memory usage after scaling and load goes down then the scaling policy would just continue to trigger and reach max instances eventually.
I'd first see if you can get some garbage collection statistics for the JVM and maybe tune the JVM to do garbage collection more often to help bring memory down faster after application load goes down.