Noise cancellation with fft failing - unable to assign elements - matlab

I have the following code for noise cancellation:
[z,fs] = audioread('noisy_voices.wav'); % Use >>soundsc(z, fs) to hear the unprocessed signal
zproc_vec=zeros(1,length(z));
tail = zeros(1,256);
for k = 0:128:length(z)-256
Z = fft(z(k +1:k + 256).* hann(256));
[zmax, zl] = max(abs(Z(1:128)));
Z(zl-3: zl +3)=0;
Z(256-(zl-3:zl +3)+2)=0;
zproc = ifft(Z);
zproc = zproc+tail;
tail(1:128) = zproc(129:256);
zproc_vec(k+1:k+256)=zproc;
end
soundsc(zproc_vec , fs)
Could anyone tell me why I get this error?
Unable to perform assignments because the left and right sides have a different number of elements
Error in task_one (line 12)
zproc_vec(k+1:k+256)=zproc;

I think the output of your Z = fft( ___ ) line will be a column vector, but you initialise tail to be a row vector with tail = zeros(1,256);
So on this line:
zproc = zproc+tail;
Implicit expansion would make zproc a square 256*256 matrix.
Then your indexing fails, as specified by the error message, because you're trying to assign this square matrix to the 256 elements you're indexing with zproc_vec(k+1:k+256).
Initialising tail to a column vector should solve the issue.
Alternatively you could take the "lazy" way out and make sure you're only operating on column vectors to create zproc
zproc = zproc(:)+tail(:); % Make both terms column vectors for addition

''Unable to perform assignments because the left and right sides have a different number of elements''
What part of the error message do you not understand? It means that the variables on the left and the right side of the equal sign have different sizes so you can't assign the right thingy to the left thingy.
Check the sizes and make sure they are the same.

Related

Why I am getting matrix dimension error in the line while calculating n?

Can you please tell me what's wrong with the following code?
function [n]=calculate_n(p,delta)
e = 1.6*power(10,-19);
k = 1.38*power(10,-23);
T = 298;
co = 3.25*power(10,13)*e*power(10,4);
er=12.5;
eo=1.0;
Nv=3*power(10,13);
us = log((p*e)/sqrt(2*k*T*er*eo*Nv))*2*k*T;
tmp = delta+(e*e*p)/co+us;
n = 1/(exp((tmp))+1);
end
I am getting matrix dimension error while calculating n. Please help me.
Caller:
e = 1.6*power(10,-19);
x = logspace(13,18);
y=calculate_n(x,0.2*e);
semilogx(x,y,'-s');
grid on;
Just replace n = 1/(exp((tmp))+1); with n = 1./(exp(tmp)+1);. But beware, tmp is so small for these values that exp(tmp) will always be 1. Also, there is a surplus bracket around tmp, you might want to check if you put them correctly.
Edit:
The reason is that A/B tries to solve the system of linear equations A*x = B for x which is not what you wanted. It threw an error because it requires both variables to have the same number of columns. A./B performs element-wise matrix division which is what you wanted. However, if A and B are singular A/B = A./B. See the documentation for more info.

matlab help in finding dimensions

Can anybody help me with this assignment please?
I am new to matlab, and passing this year depends on this assignment, i don't have much time to explore matlab and i already wasted alot of time trying to do this assignment in my way.
I have already wrote the equations on the paper, but transfering the equations into matlab codes is really hard for me.
All i have for now is:
syms h
l = (0.75-h.^2)/(3*sqrt((5*h.^2)/4)); %h is h_max
V_default = (h.^2/2)*l;
dv = diff(V_default); %it's max. when the derivative is max.
h1 = solve( dv ==0);
h_max = (h1>0);
l_max = (0.75-h_max.^2)/(3*sqrt((h_max/2).^2+(h_max.^2)));
V_max = ((h_max.^2)./(2.*l_max));
but it keep give me error "Error using ./
Matrix dimensions must agree.
Error in triangle (line 9)
V_max = ((h_max.^2)./(2.*l_max)); "
Not really helping with the assignment here, but with the Matlab syntax. In the following line:
l_max = (0.75-h_max.^2)/(3*sqrt((h_max/2).^2+(h_max.^2)));
you're using / that is a matrix divide. You might want to use ./ which will divide the terms element by element. If I do this
l_max = (0.75-h_max.^2) ./ (3*sqrt((h_max/2).^2+(h_max.^2)));
then your code doesn't return any error. But I have no idea if it's the correct solution of your assignment, I'll leave that to you!
In line 5, the result h1 is a vector of two values but the variable itself remains symbolic, from the Symbolic Math Toolbox. MATLAB treats such variables slightly different. For that reason, the line h_max = (h1>0) doesn't really do what you expect. As I think from this point, you are interested in one value h_max, I would convert h1 to a regular MATLAB variable and change your code to the following:
h1 = double(solve( dv ==0)); % converts symbolic to regular vectors
h_max = h1(h1>0); % filters out all negative and zero values
l_max = (0.75-h_max.^2)/(3*sqrt((h_max/2).^2+(h_max.^2)));
V_max = ((h_max.^2)./(2.*l_max));
EDIT.
If you still have error, it means solve( ...) returns more than 1 positive values. In this case, as suggested, use dotted operations, such as ./ but the results in l_max and V_max will not be a single value but vectors of the same size as h_max. Which means you don't have one max Volume.

integers can only be combined with integers of same class or scalar doubles error

I do not know what this error means or how to fix it. I am trying to perform an image rotation in a separate space of coordinates. When defining the reference space of the matrix to be at zero, I am getting the error that integers can only be comibined with integers of the same class or scalar doubles. the line is
WZcentered = WZ - [x0;yo]*ones(1,Ncols);
WZ is classified as a 400x299x3 unit 8, in the workspace. It is an image. x0 and y0 are set to 0 when the function is called. How can I fix this issue/what exactly is happening here?
Also, when I do the same thing yet make WZ to be equal to double(WZ) I get the error that 'matrix dimensions must agree.' I am not sure what the double function does however. Here is the whole code.
function [out_flag, WZout, x_final, y_final] = adopted_moveWZ(WZ, x0, y0);
%Initial Test of plot
[Nrows,Ncols]=size(WZ);
if Nrows ~= 2
if Ncols ==2
WZ=transpose(WZ); %take transpose
[Nrows,Ncols]=size(WZ); %reset the number of rows and columns
else
fprintf('ERROR: Input file should have 2-vectors for the input points.\n');
end
end
plot(WZ(1,:),WZ(2,:),'.')
title('These are the original points in the image');
pause(2.0)
%WZorig = WZ;
%centering
WZcentered = WZ - ([x0;y0] * ones(1,Ncols));
FigScale=400;
axis([-FigScale 2*FigScale -FigScale 2*FigScale])
disp('Hit any key to start the animation');
pause;
SceneCenter = zeros(Nrows,Ncols);
WZnew = WZcentered;
for ii=0:20
%rotate
R = [cos(pi/ii) -sin(pi/ii) 0; sin(pi/ii) cos(pi/ii) 0; 0 0 1];
WZnew = R * WZnew;
plot(WZnew(1,:),WZnew(2,:),'.')
%place WZnew at a different place in the scene
SceneCenter = (ii*[30;40])*ones(1,Ncols);
plot(SceneCenter(1,:) + WZnew(1,:), SceneCenter(2,:) + WZnew(2,:),'.')
axis([-FigScale 2*FigScale -FigScale 2*FigScale])
pause(1.0);
end
%Set final values for output at end of program
x_final = SceneCenter(1,1);
y_final = SceneCenter(2,1);
PPout = PPnew + SceneCenter;
This happens due to WZ and ([x0;y0] * ones(1,Ncols)) being of different data types. You might think MATLAB is loosely typed, and hence should do the right thing when you have a floating point type operated with an integer type, but this rule breaks every once in a while. A simpler example to demonstrate this is here:
X = uint8(magic(5))
Y = zeros(5)
X - Y
This breaks with the same error that you are reporting. One way to fix this is to force cast one of the operands to the other, typically up-casted to make sure the math works. When you do this, both the numbers you are working on are floating point (double precision), and so they are represented in the same byte formatting sequence in memory. This way, the '-' sign is valid, in the same way that you can say 3 apples + 4 apples = 7 apples, but 3 oranges (uint8) + 4 apples (double) = ?. The double(X) makes it clear that you really mean to use double precision arithmetic, and hence fixes the error. This is how it looks now:
double(X) - Y
After having identified this, the new error is 'matrix dimensions do not match'. This means exactly what it says. WZ is a 400x299x3 matrix, and the right hand side matrix is 2xnCols. Now can you subtract a 2D matrix from a 3D matrix of different sizes meaningfully?
Depending on what your code is really intending to do, you can pad the RHS matrix, or find out other ways to make the sizes equal.
All of this is why MATLAB includes routines to do image rotation, namely http://www.mathworks.com/help/images/ref/imrotate.html . This is part of the Image Processing Toolbox, though.

MATLAB Plotting Inner Matrix elements must agree

So I'm just trying to plot 4 different subplots with variations of the increments. So first would be dx=5, then dx=1, dx=0.1 and dx=0.01 from 0<=x<=20.
I tried to this:
%for dx = 5
x = 0:5:20;
fx = 2*pi*x *sin(x^2)
plot(x,fx)
however I get the error inner matrix elements must agree. Then I tried to do this,
x = 0:5:20
fx = (2*pi).*x.*sin(x.^2)
plot(x,fx)
I get a figure, but I'm not entirely sure if this would be the same as what I am trying to do initially. Is this correct?
The initial error arose since two vectors with the same shape cannot be squared (x^2) nor multiplied (x * sin(x^2)). The addition of the . before the * and ^ operators is correct here since that will perform the operation on the individual elements of the vectors. So yes, this is correct.
Also, bit of a more advanced feature, you can use an anonymous function to aid in the expressions:
fx = #(x) 2*pi.*x.*sin(x.^2); % function of x
x = 0:5:20;
plot(x,fx(x));
hold('on');
x = 0:1:20;
plot(x,fx(x));
hold('off');

Error: Matrix dimensions must agree for plot

having a problem with my "new love", matlab: I wrote a function to calculate an integral using the trapz-method: `
function [L]=bogenlaenge_innen(schwingungen)
R = 1500; %Ablegeradius
OA = 1; %Amplitude
S = schwingungen; %Schwingungszahl
B = 3.175; %Tapebreite
phi = 0:2.*pi./10000:2.*pi;
BL = sqrt((R-B).^2+2.*(R-B).*OA.*sin(S.*phi)+OA.^2.*(sin(S.*phi)).^2+OA.^2.*S.^2.*(cos(S.*phi)).^2);
L = trapz(phi,BL)`
this works fine when i start it with one specific number out of the command-window. Now I want to plot the values of "L" for several S.
I did the following in a new *.m-file:
W = (0:1:1500);
T = bogenlaenge_innen(W);
plot(W,T)
And there it is:
Error using .*
Matrix dimensions must agree.
What is wrong? Is it just a dot somewhere? I am using matlab for the second day now, so please be patient.... ;) Thank you so much in advance!
PS: just ignore the german part of the code, it does not really matter :)
In your code, the arrays S and phi in the expression sin(S.*phi) should have same size or one of them should be a constant in order the code works
The error is most likely because you have made it so that the number of elements in schwingungen, i.e. W in your code, must be equal to the number of elements in phi. Since size(W) gives you a different result from size(0:2.*pi./10000:2.*pi), you get the error.
The way .* works is that is multiplies each corresponding elements of two matrices provided that they either have the same dimensions or that one of them is a scalar. So your code will work when schwingungen is a scalar, but not when it's a vector as chances are it has a different number of elements from the way you hard coded phi.
The simplest course of action (not necessarily the most Matlabesque though) for you is to loop through the different values of S:
W = (0:1:1500);
T = zeros(size(W); %Preallocate for speed)
for ii = 1:length(W)
T(ii) = bogenlaenge_innen(W(ii));
end
plot(W,T)
In your function you define phi as a vector of 10001 elements.
In this same function you do S.*phi, so if S is not the same length as phi, you will get the "dimensions must agree" error.
In your call to the function you are doing it with a vector of length 1501, so there is your error.
Regards