Drools rule is running then clause multiply times - drools

I have just started learning Drools and have written the following rule
rule "matematikk"
when
class( code == "MAT1003") or class( code == "MAT1008")
or
class( code == "REA3022") or class( code == "REA3024") or class( code == "REA3026") or class( code == "REA3028")
or
class(code == "MAT1006") and class(code == "MAT1010") or class( code == "MAT1001") and class( code == "MAT1005")
or
class(code == "MAT1002") or class(code == "MAT1007")
then
logger.info("passed");
end
when I run this rule I will get three passed prints in the terminal? which is correct since only three of the line are true, but how do I make it process the entire "when" block and after that go to the "then" section.
cheers,
ehsan
also if I remove the "or" between the lines I won't get any results.

Your rule doesn't really make sense. You've got "ands" and "ors" mixed up in here in no particular order. Setting things on separate lines doesn't create any sort of "grouping". Proximity similarly doesn't provide any sort of inherent relationship. The "and"s on the third 'line' are particularly confusing -- I have no idea what they're supposed to be and-ing.
Generally, if you want to represent an "or" condition, you'd write the conditional like this:
class( code in ("MAT1003", "MAT1008", ... ))
(Where "..." represents additional values.)
This is read as "There is a 'class' that has code MAT1003 or MAT1008."
For an "and" you'd simply have two different statements; only if both match will the rule be 'triggered'. For example:
exists(class(code == "MAT1006"))
exists(class(code == "MAT1010"))
This would trigger if there are at least 2 "class" instances in working memory, and there is at least one with code MAT1006 and at least one with code MAT1010.
I used exists because you don't actually need a reference to the matching instance for use in the right hand side; I also presumed you only need to trigger once regardless of how many instances matched your condition.
Finally -- I strongly suggest not naming your class "class" since it's a reserved word in Java. If it is representing some sort of educational class (eg at university), may I suggest calling it Course instead?

Related

Is using ANY (or ALL) faster than checking manually against each entry in the ANY? - postgres

Say I want to check
"A does not equal any of the following: A, B, C"
I could write my condition as
A != ALL('{A, B, C})`
I could also write it as
A != A and A != B and A != C
I know I'm not really using types correctly here (mostly for brevity) but the idea should be clear. Is one of these faster than the other? I'm not sure how to test these kind of things on databases yet :(
Both versions should produce the same execution plan, but if you want to get rid of the subjunctive in that sentence, you should check yourself using EXPLAIN.
By the way, I recommend that you use the SQL standard operator <> rather than !=.

Drools RETE algorithm confusion

I am having an issue understanding RETE algorithm Beta node JoinNode and notNode?
Documentation says :
There are two two-input nodes, JoinNode and NotNode, and both are
types of BetaNodes. BetaNodes are used to compare 2 objects, and their
fields, to each other. The objects may be the same or different types.
By convention, we refer to the two inputs as left and right. The left
input for a BetaNode is generally a list of objects; in Drools this is
a Tuple. The right input is a single object. Two Nodes can be used to
implement 'exists' checks. BetaNodes also have memory. The left input
is called the Beta Memory and remembers all incoming tuples. The right
input is called the Alpha Memory and remembers all incoming objects.
I understood, Alpha Node: Various literal conditions for drl rules but above documentation for BetaNodes is confusing me a bit.
say below is drl condition for above diagram:
$person : Person( favouriteCheese == $cheddar )
Query: 1) what are these left and right inputs to two-input Beta Nodes exactly as explained in above documentation? I believe it's referring to facts and rules where I believe tuples would be facts?
2) notNode would be basically drl condition matching literal condition with not?
Updated question on 6Sep17:
3) I believe above diagram represent joinNode, how would notNode be represented , if above workflow is altered to suit notNode?
The condition corresponding to the diagram would be
Cheese( $name: name == "Cheddar" )
Person( favouriteCheese == $name )
Once there is a match, a new tuple consisting of the matching Cheese and Person is composed and can act as a new tuple for further matches if there is a third pattern in the condition.
A not-node would be one that asserts the non-existence of some fact. It would fire only once.
You might find a much better description of "rete" on the web.

Drools from clause not working

The most basic use of from clause is not working, even when I know there are elements in the list and there is no conditions for the elements being extracted from that list, and I have other rules working properly.
Here is what happens, there are many variables in my problem, but I have simplified to this:
Having this two rules, the firstone is made to demostrate that fixedShipmentValueData list, has at least one element. However, the second rule isn't fired, even when the only different thing it does from the firstone, is to use the from clause and put a variable name.
rule "Print list value"
ruleflow-group "fixed-values"
no-loop
when
cParams: CustomerParameters(list: fixedShipmentValueData)
then
System.out.format("There are %s elements at fixedShipmentValue and fixed value is %s%n",list.size(),
((ParameterValues)list.get(0)).getFixedShipmentValue());
end
rule "Do something with the list"
ruleflow-group "fixed-values"
no-loop
when
cParams: CustomerParameters(list: fixedShipmentValueData)
ParameterValues($fixedShipmentValue: fixedShipmentValue) from list
then
System.out.format("fixed Shipment Value is %s%n", $fixedShipmentValue);
end
This looks so simple... I have expent enough time as to be out of ideas.
Without seeing the Java code for CustomerParameters, ParameterValues and the application part that creates, composes and inserts the fact(s) there's just one scenario I know that can reproduce the effect as you have told it. Consider this:
A List<Base> is field list in class X. There are subclasses SubA and SubB both extending Base. Create X, add objects of class SubA to list. A rule (like "Print list value") will show that the list is not empty.
However, a rule using a pattern such as
X( $list: list )
SubB() from $list
will never fire, since there are no SubB's in Base.list.

Breaking when a method returns null in the Eclipse debugger

I'm working on an expression evaluator. There is an evaluate() function which is called many times depending on the complexity of the expression processed.
I need to break and investigate when this method returns null. There are many paths and return statements.
It is possible to break on exit method event but I can't find how to put a condition about the value returned.
I got stuck in that frustration too. One can inspect (and write conditions) on named variables, but not on something unnamed like a return value. Here are some ideas (for whoever might be interested):
One could include something like evaluate() == null in the breakpoint's condition. Tests performed (Eclipse 4.4) show that in such a case, the function will be performed again for the breakpoint purposes, but this time with the breakpoint disabled. So you will avoid a stack overflow situation, at least. Whether this would be useful, depends on the nature of the function under consideration - will it return the same value at breakpoint time as at run time? (Some s[a|i]mple code to test:)
class TestBreakpoint {
int counter = 0;
boolean eval() { /* <== breakpoint here, [x]on exit, [x]condition: eval()==false */
System.out.println("Iteration " + ++counter);
return true;
}
public static void main(String[] args) {
TestBreakpoint app = new TestBreakpoint();
System.out.println("STARTED");
app.eval();
System.out.println("STOPPED");
}
}
// RESULTS:
// Normal run: shows 1 iteration of eval()
// Debug run: shows 2 iterations of eval(), no stack overflow, no stop on breakpoint
Another way to make it easier (to potentially do debugging in future) would be to have coding conventions (or personal coding style) that require one to declare a local variable that is set inside the function, and returned only once at the end. E.g.:
public MyType evaluate() {
MyType result = null;
if (conditionA) result = new MyType('A');
else if (conditionB) result = new MyType ('B');
return result;
}
Then you can at least do an exit breakpoint with a condition like result == null. However, I agree that this is unnecessarily verbose for simple functions, is a bit contrary to flow that the language allows, and can only be enforced manually. (Personally, I do use this convention sometimes for more complex functions (the name result 'reserved' just for this use), where it may make things clearer, but not for simple functions. But it's difficult to draw the line; just this morning had to step through a simple function to see which of 3 possible cases was the one fired. For today's complex systems, one wants to avoid stepping.)
Barring the above, you would need to modify your code on a case by case basis as in the previous point for the single function to assign your return value to some variable, which you can test. If some work policy disallows you to make such non-functional changes, one is quite stuck... It is of course also possible that such a rewrite could result in a bug inadvertently being resolved, if the original code was a bit convoluted, so beware of reverting to the original after debugging, only to find that the bug is now back.
You didn't say what language you were working in. If it's Java or C++ you can set a condition on a Method (or Function) breakpoint using the breakpoint properties. Here are images showing both cases.
In the Java example you would unclik Entry and put a check in Exit.
Java Method Breakpoint Properties Dialog
!
C++ Function Breakpoint Properties Dialog
This is not yet supported by the Eclipse debugger and added as an enhancement request. I'd appreciate if you vote for it.
https://bugs.eclipse.org/bugs/show_bug.cgi?id=425744

Methods of simplifying ugly nested if-else trees in C#

Sometimes I'm writing ugly if-else statements in C# 3.5; I'm aware of some different approaches to simplifying that with table-driven development, class hierarchy, anonimous methods and some more.
The problem is that alternatives are still less wide-spread than writing traditional ugly if-else statements because there is no convention for that.
What depth of nested if-else is normal for C# 3.5? What methods do you expect to see instead of nested if-else the first? the second?
if i have ten input parameters with 3 states in each, i should map functions to combination of each state of each parameter (really less, because not all the states are valid, but sometimes still a lot). I can express these states as a hashtable key and a handler (lambda) which will be called if key matches.
It is still mix of table-driven, data-driven dev. ideas and pattern matching.
what i'm looking for is extending for C# such approaches as this for scripting (C# 3.5 is rather like scripting)
http://blogs.msdn.com/ericlippert/archive/2004/02/24/79292.aspx
Good question. "Conditional Complexity" is a code smell. Polymorphism is your friend.
Conditional logic is innocent in its infancy, when it’s simple to understand and contained within a
few lines of code. Unfortunately, it rarely ages well. You implement several new features and
suddenly your conditional logic becomes complicated and expansive. [Joshua Kerevsky: Refactoring to Patterns]
One of the simplest things you can do to avoid nested if blocks is to learn to use Guard Clauses.
double getPayAmount() {
if (_isDead) return deadAmount();
if (_isSeparated) return separatedAmount();
if (_isRetired) return retiredAmount();
return normalPayAmount();
};
The other thing I have found simplifies things pretty well, and which makes your code self-documenting, is Consolidating conditionals.
double disabilityAmount() {
if (isNotEligableForDisability()) return 0;
// compute the disability amount
Other valuable refactoring techniques associated with conditional expressions include Decompose Conditional, Replace Conditional with Visitor, Specification Pattern, and Reverse Conditional.
There are very old "formalisms" for trying to encapsulate extremely complex expressions that evaluate many possibly independent variables, for example, "decision tables" :
http://en.wikipedia.org/wiki/Decision_table
But, I'll join in the choir here to second the ideas mentioned of judicious use of the ternary operator if possible, identifying the most unlikely conditions which if met allow you to terminate the rest of the evaluation by excluding them first, and add ... the reverse of that ... trying to factor out the most probable conditions and states that can allow you to proceed without testing of the "fringe" cases.
The suggestion by Miriam (above) is fascinating, even elegant, as "conceptual art;" and I am actually going to try it out, trying to "bracket" my suspicion that it will lead to code that is harder to maintain.
My pragmatic side says there is no "one size fits all" answer here in the absence of a pretty specific code example, and complete description of the conditions and their interactions.
I'm a fan of "flag setting" : meaning anytime my application goes into some less common "mode" or "state" I set a boolean flag (which might even be static for the class) : for me that simplifies writing complex if/then else evaluations later on.
best, Bill
Simple. Take the body of the if and make a method out of it.
This works because most if statements are of the form:
if (condition):
action()
In other cases, more specifically :
if (condition1):
if (condition2):
action()
simplify to:
if (condition1 && condition2):
action()
I'm a big fan of the ternary operator which get's overlooked by a lot of people. It's great for assigning values to variables based on conditions. like this
foobarString = (foo == bar) ? "foo equals bar" : "foo does not equal bar";
Try this article for more info.
It wont solve all your problems, but it is very economical.
I know that this is not the answer you are looking for, but without context your questions is very hard to answer. The problem is that the way to refactor such a thing really depends on your code, what it is doing, and what you are trying to accomplish. If you had said that you were checking the type of an object in these conditionals we could throw out an answer like 'use polymorphism', but sometimes you actually do just need some if statements, and sometimes those statements can be refactored into something more simple. Without a code sample it is hard to say which category you are in.
I was told years ago by an instructor that 3 is a magic number. And as he applied it it-else statements he suggested that if I needed more that 3 if's then I should probably use a case statement instead.
switch (testValue)
{
case = 1:
// do something
break;
case = 2:
// do something else
break;
case = 3:
// do something more
break;
case = 4
// do what?
break;
default:
throw new Exception("I didn't do anything");
}
If you're nesting if statements more than 3 deep then you should probably take that as a sign that there is a better way. Probably like Avirdlg suggested, separating the nested if statements into 1 or more methods. If you feel you are absolutely stuck with multiple if-else statements then I would wrap all the if-else statements into a single method so it didn't ugly up other code.
If the entire purpose is to assign a different value to some variable based upon the state of various conditionals, I use a ternery operator.
If the If Else clauses are performing separate chunks of functionality. and the conditions are complex, simplify by creating temporary boolean variables to hold the true/false value of the complex boolean expressions. These variables should be suitably named to represent the business sense of what the complex expression is calculating. Then use the boolean variables in the If else synatx instead of the complex boolean expressions.
One thing I find myself doing at times is inverting the condition followed by return; several such tests in a row can help reduce nesting of if and else.
Not a C# answer, but you probably would like pattern matching. With pattern matching, you can take several inputs, and do simultaneous matches on all of them. For example (F#):
let x=
match cond1, cond2, name with
| _, _, "Bob" -> 9000 // Bob gets 9000, regardless of cond1 or 2
| false, false, _ -> 0
| true, false, _ -> 1
| false, true, _ -> 2
| true, true, "" -> 0 // Both conds but no name gets 0
| true, true, _ -> 3 // Cond1&2 give 3
You can express any combination to create a match (this just scratches the surface). However, C# doesn't support this, and I doubt it will any time soon. Meanwhile, there are some attempts to try this in C#, such as here: http://codebetter.com/blogs/matthew.podwysocki/archive/2008/09/16/functional-c-pattern-matching.aspx. Google can turn up many more; perhaps one will suit you.
try to use patterns like strategy or command
In simple cases you should be able to get around with basic functional decomposition. For more complex scenarios I used Specification Pattern with great success.