GreenMail atomic getReceivedMessages() and purgeEmailFromAllMailboxes() - greenmail

Is there a way how to atomically receive messages from GreenMail and then purge those messages? I don't want to receive any message more than once. Something like getReceivedMessagesAndPurge().
In my code, I want to write any email received by GreenMail to disk. My plan is to call GreenMail.getReceivedMessages() let say every second and write received messages to disk. And after that I need to call GreenMail.purgeEmailFromAllMailboxes() in order to write any message to disk only once. However there is a race condition which I don't know, how to avoid.

You could write your own MessageDeliveryHandler to do that.
Example:
https://github.com/greenmail-mail-test/greenmail/blob/master/greenmail-core/src/test/java/com/icegreen/greenmail/examples/ExampleUndeliverableTest.java

Related

MSMQ transactional or recoverable

I have a question about MSMQ. If I use a non-transactional queue and send message to it with recoverable parameter, message is stored on disc and in case of some problem secure. But if I want pull message from non-transactional queue, is there some mechanism to secure messages to stay in queue in case of some problem (server error, db off...)?
For some reasons I don't want to use transactional queue. Thanks a lot for response.
You could implement a peek-then-receive process to simulate a transaction.
Peek message to get content.
Use the content as you wish.
If step 2 completes then Receive message to effectively delete it.
If step 2 fails, execute cleanup code and goto step 1.

Using many consumers in SQS Queue

I know that it is possible to consume a SQS queue using multiple threads. I would like to guarantee that each message will be consumed once. I know that it is possible to change the visibility timeout of a message, e.g., equal to my processing time. If my process spend more time than the visibility timeout (e.g. a slow connection) other thread can consume the same message.
What is the best approach to guarantee that a message will be processed once?
What is the best approach to guarantee that a message will be processed once?
You're asking for a guarantee - you won't get one. You can reduce probability of a message being processed more than once to a very small amount, but you won't get a guarantee.
I'll explain why, along with strategies for reducing duplication.
Where does duplication come from
When you put a message in SQS, SQS might actually receive that message more than once
For example: a minor network hiccup while sending the message caused a transient error that was automatically retried - from the message sender's perspective, it failed once, and successfully sent once, but SQS received both messages.
SQS can internally generate duplicates
Simlar to the first example - there's a lot of computers handling messages under the covers, and SQS needs to make sure nothing gets lost - messages are stored on multiple servers, and can this can result in duplication.
For the most part, by taking advantage of SQS message visibility timeout, the chances of duplication from these sources are already pretty small - like fraction of a percent small.
If processing duplicates really isn't that bad (strive to make your message consumption idempotent!), I'd consider this good enough - reducing chances of duplication further is complicated and potentially expensive...
What can your application do to reduce duplication further?
Ok, here we go down the rabbit hole... at a high level, you will want to assign unique ids to your messages, and check against an atomic cache of ids that are in progress or completed before starting processing:
Make sure your messages have unique identifiers provided at insertion time
Without this, you'll have no way of telling duplicates apart.
Handle duplication at the 'end of the line' for messages.
If your message receiver needs to send messages off-box for further processing, then it can be another source of duplication (for similar reasons to above)
You'll need somewhere to atomically store and check these unique ids (and flush them after some timeout). There are two important states: "InProgress" and "Completed"
InProgress entries should have a timeout based on how fast you need to recover in case of processing failure.
Completed entries should have a timeout based on how long you want your deduplication window
The simplest is probably a Guava cache, but would only be good for a single processing app. If you have a lot of messages or distributed consumption, consider a database for this job (with a background process to sweep for expired entries)
Before processing the message, attempt to store the messageId in "InProgress". If it's already there, stop - you just handled a duplicate.
Check if the message is "Completed" (and stop if it's there)
Your thread now has an exclusive lock on that messageId - Process your message
Mark the messageId as "Completed" - As long as this messageId stays here, you won't process any duplicates for that messageId.
You likely can't afford infinite storage though.
Remove the messageId from "InProgress" (or just let it expire from here)
Some notes
Keep in mind that chances of duplicate without all of that is already pretty low. Depending on how much time and money deduplication of messages is worth to you, feel free to skip or modify any of the steps
For example, you could leave out "InProgress", but that opens up the small chance of two threads working on a duplicated message at the same time (the second one starting before the first has "Completed" it)
Your deduplication window is as long as you can keep messageIds in "Completed". Since you likely can't afford infinite storage, make this last at least as long as 2x your SQS message visibility timeout; there is reduced chances of duplication after that (on top of the already very low chances, but still not guaranteed).
Even with all this, there is still a chance of duplication - all the precautions and SQS message visibility timeouts help reduce this chance to very small, but the chance is still there:
Your app can crash/hang/do a very long GC right after processing the message, but before the messageId is "Completed" (maybe you're using a database for this storage and the connection to it is down)
In this case, "Processing" will eventually expire, and another thread could process this message (either after SQS visibility timeout also expires or because SQS had a duplicate in it).
Store the message, or a reference to the message, in a database with a unique constraint on the Message ID, when you receive it. If the ID exists in the table, you've already received it, and the database will not allow you to insert it again -- because of the unique constraint.
AWS SQS API doesn't automatically "consume" the message when you read it with API,etc. Developer need to make the call to delete the message themselves.
SQS does have a features call "redrive policy" as part the "Dead letter Queue Setting". You just set the read request to 1. If the consume process crash, subsequent read on the same message will put the message into dead letter queue.
SQS queue visibility timeout can be set up to 12 hours. Unless you have a special need, then you need to implement process to store the message handler in database to allow it for inspection.
You can use setVisibilityTimeout() for both messages and batches, in order to extend the visibility time until the thread has completed processing the message.
This could be done by using a scheduledExecutorService, and schedule a runnable event after half the initial visibility time. The code snippet bellow creates and executes the VisibilityTimeExtender every half of the visibilityTime with a period of half the visibility time. (The time should to guarantee the message to be processed, extended with visibilityTime/2)
private final ScheduledExecutorService scheduler = Executors.newScheduledThreadPool(1);
ScheduledFuture<?> futureEvent = scheduler.scheduleAtFixedRate(new VisibilityTimeExtender(..), visibilityTime/2, visibilityTime/2, TimeUnit.SECONDS);
VisibilityTimeExtender must implement Runnable, and is where you update the new visibility time.
When the thread is done processing the message, you can delete it from the queue, and call futureEvent.cancel(true) to stop the scheduled event.

Mule messages currently in the VM Queue

How can I get copy of all messages (or references of all messages) that are on a VMQueue?
I want to loop through the list of messages that are currently on VMQueue, check the payload of every message, and based on that make decision about next step in the flow.
Thanks.
You have to consume them with a vm:inbound-endpoint, you can't peek or browse them without actually taking them out of the queue.

Using MQMoveMessage

I'm trying to add poison message handling in my message queuing implementation. I'm receiving a batch of messages from a transactional queue, lets say 100, and if any are deemed 'poisonness', I want to move them to a subqueue where they can be handled separately.
The problem I'm having is knowing how to use MQMoveMessage. If I use it using the same transaction as the receive, I get an MQ_ERROR_MESSAGE_LOCKED_UNDER_TRANSACTION result code. If I use it after the receive transaction, I [of course] get a MQ_ERROR_MESSAGE_NOT_FOUND result code.
I imagine this works if I peek the message, since that doesn't lock the message, or remove it from the queue. However, that doesn't help since I'm receiving, and using a transactional queue.
Any help with this would be appreciated.
If anyone has the same issue, it appears the pattern is as above. That is, a transaction should be aborted, the message moves performed, and the transaction re-read.

MSMQ Adding a delay on Messages

I have a Microsoft Message Queue that gets populated with messages. If there is a problem with the processing of the message, I would like to retry the message, I do not want to retry the message immidiatley.
Is there a way to add a delay to the message in the MSMQ to avoid it being available for a certain amount of time??
The other alternative is to have another queue (A retry queue) and read that queue every 15 minutes, But i would rather not do this.
What you are looking for is "Poison Message Handling" ( even if its not the message fault, but an temporary environment problem ).
There are lots of articles on that. Here are some:
Poison Message Handling in MSMQ 3.0
Poison Message Handling in MSMQ 4.0
Surviving poison messages in MSMQ
In short: you have to move them to a retry queue.
So I've seen some code recently that handles this in the exception logic, the code has a built in retry step that attempts after a delay. It fails, waits for a specific amount of time, then tries again.
Essentially it recursively tries a set number of times (lengthening the delay each time). Fairly neat, no reason to have another queue. There is alot of generics and delegates used to execute the methods. Don't know if something like this could be done or not. I would suspect you would still want to handle the case of the message not being able to be delivered with another queue though.