STM32G431 Instruction Pointer in System Memory (0x1fff4be0) - stm32

I am using an STM32G431CB (and the HAL) to record ADC data data using DMA, control/read GPIOs, communicate via I2C and USB CDC (virtual comm port), and use timers. I have verified that each of these peripherals work correctly individually both on a dev board (NUCLEO-G431KB) and on my custom board with the 48 pin version of the same chip (STM32G431CB).
However, the problem that I am running into is that the program will occasionally jump to an instruction at address 0x1fff4be0. This is in system memory. After inspecting disassembly, I don't see any instruction that would cause it to branch here. In different versions of this program with one or few of the peripherals running, this jump has happened when calling different HAL functions including:
HAL_GPIO_ReadPin
HAL_GPIO_WritePin
HAL_I2C_Master_Transmit
HAL_ADC_Start_DMA
I don't think that there is any correlation between the function called and the jump to system memory.
What can cause the STM32 to do this? I am trying to use PB8-BOOT0 as a GPIO output. When I leave PB8-BOOT0 unconfigured (reset state), I do not run into this issue.
main.c:
#include "main.h"
#include "usb_device.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <stdint.h>
#include "mymain.h"
#include "usbd_cdc_if.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;
I2C_HandleTypeDef hi2c3;
TIM_HandleTypeDef htim6;
TIM_HandleTypeDef htim7;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_ADC1_Init(void);
static void MX_DMA_Init(void);
static void MX_I2C3_Init(void);
static void MX_TIM7_Init(void);
static void MX_TIM6_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint16_t ADC_result[4]; // ADC results: {TEMP_SENSOR, AC_CHG, R_SLIDER, L_SLIDER}
uint8_t I2Cdata;
uint8_t USB_tx_buffer[24];
struct SB_data SB1;
struct SB_data SB2;
uint16_t GPIO_data = 0x00c0;
/* USER CODE END 0 */
/**
* #brief The application entry point.
* #retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_ADC1_Init();
MX_DMA_Init();
MX_I2C3_Init();
MX_USB_Device_Init();
MX_TIM7_Init();
MX_TIM6_Init();
/* USER CODE BEGIN 2 */
HAL_DMA_Init(&hdma_adc1);
TPS55288Q1_Init();
// GPIO initial states
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_RESET); // Initialize USB 3 hub in reset until tablet supplies power on TAB_DCOUT->VBUS_DET3V3 (PA2)
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_10, GPIO_PIN_RESET); // Initialize 5V, 3.3V, 2.5V, 1.2V supplies off (net Enable_Power)
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_2, GPIO_PIN_RESET); // Initialize L mouse off
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_8, GPIO_PIN_SET); // Enable EN_EXT_USB_PWR by default
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_11, GPIO_PIN_SET); // DISABLE_CHG1
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_12, GPIO_PIN_SET); // DISABLE_CHG2
// BEGIN TESTING ONLY //
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_10, GPIO_PIN_SET);
// END TESTING ONLY //
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
// ADC DMA Start
//HAL_ADC_Start_DMA(&hadc1, (uint32_t*) ADC_result, 4);
// Log GPIO data
log_GPIO_data();
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* #brief System Clock Configuration
* #retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV1;
RCC_OscInitStruct.PLL.PLLN = 12;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV4;
RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
}
/**
* #brief ADC1 Initialization Function
* #param None
* #retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_MultiModeTypeDef multimode = {0};
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Common config
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.GainCompensation = 0;
hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE;
hadc1.Init.EOCSelection = ADC_EOC_SEQ_CONV;
hadc1.Init.LowPowerAutoWait = DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.NbrOfConversion = 4;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.DMAContinuousRequests = ENABLE;
hadc1.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN;
hadc1.Init.OversamplingMode = DISABLE;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure the ADC multi-mode
*/
multimode.Mode = ADC_MODE_INDEPENDENT;
if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_1;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_2CYCLES_5;
sConfig.SingleDiff = ADC_SINGLE_ENDED;
sConfig.OffsetNumber = ADC_OFFSET_NONE;
sConfig.Offset = 0;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_2;
sConfig.Rank = ADC_REGULAR_RANK_2;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_4;
sConfig.Rank = ADC_REGULAR_RANK_3;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_TEMPSENSOR_ADC1;
sConfig.Rank = ADC_REGULAR_RANK_4;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* #brief I2C3 Initialization Function
* #param None
* #retval None
*/
static void MX_I2C3_Init(void)
{
/* USER CODE BEGIN I2C3_Init 0 */
/* USER CODE END I2C3_Init 0 */
/* USER CODE BEGIN I2C3_Init 1 */
/* USER CODE END I2C3_Init 1 */
hi2c3.Instance = I2C3;
hi2c3.Init.Timing = 0x00303D5B;
hi2c3.Init.OwnAddress1 = 0;
hi2c3.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c3.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c3.Init.OwnAddress2 = 0;
hi2c3.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
hi2c3.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c3.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c3) != HAL_OK)
{
Error_Handler();
}
/** Configure Analogue filter
*/
if (HAL_I2CEx_ConfigAnalogFilter(&hi2c3, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
{
Error_Handler();
}
/** Configure Digital filter
*/
if (HAL_I2CEx_ConfigDigitalFilter(&hi2c3, 0) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C3_Init 2 */
/* USER CODE END I2C3_Init 2 */
}
/**
* #brief TIM6 Initialization Function
* #param None
* #retval None
*/
static void MX_TIM6_Init(void)
{
/* USER CODE BEGIN TIM6_Init 0 */
/* USER CODE END TIM6_Init 0 */
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM6_Init 1 */
/* USER CODE END TIM6_Init 1 */
htim6.Instance = TIM6;
htim6.Init.Prescaler = 1600-1;
htim6.Init.CounterMode = TIM_COUNTERMODE_UP;
htim6.Init.Period = 19999;
htim6.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim6) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim6, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM6_Init 2 */
/* USER CODE END TIM6_Init 2 */
}
/**
* #brief TIM7 Initialization Function
* #param None
* #retval None
*/
static void MX_TIM7_Init(void)
{
/* USER CODE BEGIN TIM7_Init 0 */
/* USER CODE END TIM7_Init 0 */
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM7_Init 1 */
/* USER CODE END TIM7_Init 1 */
htim7.Instance = TIM7;
htim7.Init.Prescaler = 1600-1;
htim7.Init.CounterMode = TIM_COUNTERMODE_UP;
htim7.Init.Period = 121;
htim7.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim7) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim7, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM7_Init 2 */
/* USER CODE END TIM7_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMAMUX1_CLK_ENABLE();
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Channel1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
}
/**
* #brief GPIO Initialization Function
* #param None
* #retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4|GPIO_PIN_10, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_2|GPIO_PIN_11|GPIO_PIN_12|GPIO_PIN_8, GPIO_PIN_RESET);
/*Configure GPIO pins : PA4 PA10 */
GPIO_InitStruct.Pin = GPIO_PIN_4|GPIO_PIN_10;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : PB2 PB11 PB12 PB8 */
GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_11|GPIO_PIN_12|GPIO_PIN_8;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
// Initializes TPS55288Q1 buck-boost converters by configuring external voltage divider, resetting error flags, and disabling output
void TPS55288Q1_Init() {
I2Cdata = 0b10000011;
HAL_I2C_Mem_Write(&hi2c3, TPS55288Q1_TAB_DCIN_DEV_ADDR<<1, TPS55288Q1_VOUT_FS_ADDR, 1, &I2Cdata, 1, 2); // Use external voltage divider
HAL_I2C_Mem_Write(&hi2c3, TPS55288Q1_12V_DEV_ADDR<<1, TPS55288Q1_VOUT_FS_ADDR, 1, &I2Cdata, 1, 2);
HAL_I2C_Mem_Read(&hi2c3, TPS55288Q1_TAB_DCIN_DEV_ADDR<<1, TPS55288Q1_STATUS_R, 1, &I2Cdata, 1, 2); // Read and reset error flags
HAL_I2C_Mem_Read(&hi2c3, TPS55288Q1_12V_DEV_ADDR<<1, TPS55288Q1_STATUS_R, 1, &I2Cdata, 1, 2);
I2Cdata = 0b00100000; // ~OE, all else default
HAL_I2C_Mem_Write(&hi2c3, TPS55288Q1_TAB_DCIN_DEV_ADDR<<1, TPS55288Q1_MODE_R_ADDR, 1, &I2Cdata, 1, 2);
HAL_I2C_Mem_Write(&hi2c3, TPS55288Q1_12V_DEV_ADDR<<1, TPS55288Q1_MODE_R_ADDR, 1, &I2Cdata, 1, 2);
}
// switches the channel being read on ADC1
void ADC1_Select_Channel(uint32_t channel) {
ADC_ChannelConfTypeDef sConfig = {0};
sConfig.Channel = channel;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_12CYCLES_5;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) {
Error_Handler();
}
}
// reads GPIO inputs that will be transmitted to the tablet
// {DISABLE_CHG2, DISABLE_CHG1, ~BATID2, ~BATID1, RB2, RB1, LB2, LB1}
void log_GPIO_data() {
GPIO_data &= 0xffc0; // clear bottom 6 bits
GPIO_data |= HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_6) | (HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_7) << 1) |
(HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_0) << 2) | (HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_1) << 3) |
(!HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_13) << 4) | (!HAL_GPIO_ReadPin(GPIOF, GPIO_PIN_1) << 5);
}
void set_bit(uint16_t* data, uint8_t bit_pos, uint8_t value) {
if (value) {
*data |= 1<<bit_pos;
} else {
*data &= ~(1<<bit_pos);
}
}
// Returns 1 if either battery is inserted and not fully discharged or if AC_CHG_Det is 1. Indicates active power source
uint8_t PWRsource_det() {
return (bat1_inserted() && (SB1.status[0] & 0x10)) || (bat2_inserted() && (SB2.status[0] & 0x10)) || (GPIO_data & 0x0100);
}
// Returns 1 if Smart Battery 1 is inserted, 0 otherwise
uint8_t bat1_inserted() { // internal pull down resistor on smart battery when detected. Pin is low when battery is inserted
return GPIO_data & (1<<4);
}
// Returns 1 if Smart Battery 2 is inserted, 0 otherwise
uint8_t bat2_inserted() { // internal pull down resistor on smart battery when detected. Pin is low when battery is inserted
return GPIO_data & (1<<5);
}
// loads the USB CDC transmission buffer. Multi-byte data fields are Little Endian. Ends in \n\r.
void load_USB_TX_buffer(uint8_t* TX_buffer, struct SB_data* bat1, struct SB_data* bat2, uint16_t* ADC_readings, uint16_t GPIO_inputs, uint16_t temperature) {
TX_buffer[0] = bat1->status[0];
TX_buffer[1] = bat1->status[1];
TX_buffer[2] = bat1->timetoempty[0];
TX_buffer[3] = bat1->timetoempty[1];
TX_buffer[4] = bat1->voltage[0];
TX_buffer[5] = bat1->voltage[1];
TX_buffer[6] = bat1->chgpercent;
TX_buffer[7] = bat2->status[0];
TX_buffer[8] = bat2->status[1];
TX_buffer[9] = bat2->timetoempty[0];
TX_buffer[10] = bat2->timetoempty[1];
TX_buffer[11] = bat2->voltage[0];
TX_buffer[12] = bat2->voltage[1];
TX_buffer[13] = bat2->chgpercent;
TX_buffer[14] = (uint8_t) (ADC_readings[1] >> 8); // Right slider
TX_buffer[15] = (uint8_t) ADC_readings[1];
TX_buffer[16] = (uint8_t) (ADC_readings[0] >> 8); // Left Slider
TX_buffer[17] = (uint8_t) ADC_readings[0];
TX_buffer[18] = (uint8_t) (temperature >> 8); // Temperature sensor
TX_buffer[19] = (uint8_t) temperature;
TX_buffer[20] = (uint8_t) (GPIO_inputs & 0xff);
TX_buffer[21] = (uint8_t) ((GPIO_inputs >> 8) & 0xff);
TX_buffer[22] = (uint8_t) '\n';
TX_buffer[23] = (uint8_t) '\r';
}
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef* htim) {
if (htim == &htim6) { // USB RX Comms 2s timeout
HAL_TIM_Base_Stop_IT(&htim7); // Stop USB TX
HAL_TIM_Base_Stop_IT(&htim6);
// disable 12V and TAB_DCIN
uint8_t data = 0b00100000; // ~OE, all else default
HAL_I2C_Mem_Write(&hi2c3, TPS55288Q1_TAB_DCIN_DEV_ADDR<<1, TPS55288Q1_MODE_R_ADDR, 1, &data, 1, 10);
data = 0b00100100; // ~OE, address=0x75, all else default
HAL_I2C_Mem_Write(&hi2c3, TPS55288Q1_12V_DEV_ADDR<<1, TPS55288Q1_MODE_R_ADDR, 1, &data, 1, 10);
// disable 5V, 3.3V, 2.5V, 1.2V supplies (net Enable_Power)
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_10, GPIO_PIN_RESET);
} else if (htim == &htim7) { // USB TX call (82Hz)
uint16_t temperature = __HAL_ADC_CALC_TEMPERATURE(3300, ADC_result[3], ADC_RESOLUTION_12B);
load_USB_TX_buffer(USB_tx_buffer, (struct SB_data*) &SB1, (struct SB_data*) &SB2, (uint16_t*) ADC_result, GPIO_data, temperature);
CDC_Transmit_FS(USB_tx_buffer, sizeof(USB_tx_buffer));
/* ** UART DEBUG **
uint8_t usart_d[] = "SRS\n\r";
HAL_UART_Transmit(&huart2, usart_d, sizeof(usart_d), 2);
*/
}
}
/* USER CODE END 4 */
/**
* #brief This function is executed in case of error occurrence.
* #retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* #brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* #param file: pointer to the source file name
* #param line: assert_param error line source number
* #retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

Your microcontroller is executing the embedded bootloader.
Depending on the micro that can be caused by one or more of the following:
Obtion byte settings
BOOT0 pin
Content of the first word of flash during BOR.
Option byte are loaded only on BOR if an update is not explicited called through OBL_LAUNCH. Flash empty flag (the last point) is also only evaluated during BOR. No update is possible without BOR. You can exit bootloader with an approriate command via bootloader interfaces.

Probably due to the fact you are using BOOT0 as a GPIO (unless it is a specific feature of the STM32G4, I know only H7 and L4).
I think if a reset occurs for whatever reason , and the signal is at the wrong state, you will end up booting on System Flash.

Related

Access to register of unclocked peripheral at 0x40000000 cause BUS_FAULT [U2_CM3CORE]

I'm working with STM32F103C6, HCSR-04 Ultrasonic sensor and LCD display.
I simulate that in Proteus Professional 8, when I activate Timer 2 in STM32, there are big problems with frequency, frequency of LCD display = 250kHz, frequency of STM32 = 36MHz. In this state, program will eject this message "Access to register of unclocked peripheral at 0x40000000 cause BUS_FAULT [U2_CM3CORE]" more than 1000 times, and then program will crash.
If I increase frequency of STM32 in Proteus then LCD display shows nothing. Does anyone has idea how to fix this problem.
/* USER CODE BEGIN Header */
/**
******************************************************************************
* #file : main.c
* #brief : Main program body
******************************************************************************
* #attention
*
* Copyright (c) 2022 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "lcd_txt.h"
#include "stdio.h"
#include "HCSR04.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#define HCSR04_SENSOR1 8
uint16_t TRIG_Ticks = 0;
uint16_t LCD_Ticks = 0;
float Distance = 0.0;
char TEXT[16] = {0};
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
#define usTIM TIM1
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
I2C_HandleTypeDef hi2c1;
TIM_HandleTypeDef htim2;
UART_HandleTypeDef huart2;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_I2C1_Init(void);
static void MX_USART2_UART_Init(void);
static void MX_TIM2_Init(void);
/* USER CODE BEGIN PFP */
void usDelay(uint32_t uSec);
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* #brief The application entry point.
* #retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
uint32_t numTicks = 0;
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_I2C1_Init();
MX_USART2_UART_Init();
MX_TIM2_Init();
/* USER CODE BEGIN 2 */
lcd_init();
lcd_puts(1,0, (int8_t*)"test");
/* USER CODE END 2 */
HCSR04_Init(HCSR04_SENSOR1, &htim2);
lcd_puts(0,0, (int8_t*)"test");
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
Distance = HCSR04_Read(HCSR04_SENSOR1);
sprintf(TEXT, "Dist= %.2f cm", Distance);
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* #brief System Clock Configuration
* #retval None
*/
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
{
HCSR04_TMR_IC_ISR(htim);
}
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef* htim)
{
HCSR04_TMR_OVF_ISR(htim);
}
void SysTick_CallBack(void)
{
TRIG_Ticks++;
LCD_Ticks++;
if(TRIG_Ticks >= 15) // Each 15msec
{
HCSR04_Trigger(HCSR04_SENSOR1);
TRIG_Ticks = 0;
}
if(LCD_Ticks >= 200) // Each 200msec
{
lcd_clear();
lcd_puts(0,0, (int8_t*)TEXT);
LCD_Ticks = 0;
}
}
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
{
Error_Handler();
}
}
/**
* #brief I2C1 Initialization Function
* #param None
* #retval None
*/
static void MX_I2C1_Init(void)
{
/* USER CODE BEGIN I2C1_Init 0 */
/* USER CODE END I2C1_Init 0 */
/* USER CODE BEGIN I2C1_Init 1 */
/* USER CODE END I2C1_Init 1 */
hi2c1.Instance = I2C1;
hi2c1.Init.ClockSpeed = 100000;
hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C1_Init 2 */
/* USER CODE END I2C1_Init 2 */
}
/**
* #brief TIM2 Initialization Function
* #param None
* #retval None
*/
static void MX_TIM2_Init(void)
{
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_IC_InitTypeDef sConfigIC = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 0;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 0;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_IC_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;
sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;
sConfigIC.ICFilter = 0;
if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
}
/**
* #brief USART2 Initialization Function
* #param None
* #retval None
*/
static void MX_USART2_UART_Init(void)
{
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE END USART2_Init 1 */
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART2_Init 2 */
/* USER CODE END USART2_Init 2 */
}
/**
* #brief GPIO Initialization Function
* #param None
* #retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_10|GPIO_PIN_11|GPIO_PIN_12|GPIO_PIN_13
|GPIO_PIN_14|GPIO_PIN_15, GPIO_PIN_RESET);
/*Configure GPIO pins : PB10 PB11 PB12 PB13
PB14 PB15 */
GPIO_InitStruct.Pin = GPIO_PIN_10|GPIO_PIN_11|GPIO_PIN_12|GPIO_PIN_13
|GPIO_PIN_14|GPIO_PIN_15;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
void usDelay(uint32_t uSec)
{
if(uSec < 2) uSec = 2;
usTIM->ARR = uSec - 1; /*sets the value in the auto-reload register*/
usTIM->EGR = 1; /*Re-initialises the timer*/
usTIM->SR &= ~1; //Resets the flag
usTIM->CR1 |= 1; //Enables the counter
while((usTIM->SR&0x0001) != 1);
usTIM->SR &= ~(0x0001);
}
/* USER CODE END 4 */
/**
* #brief This function is executed in case of error occurrence.
* #retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* #brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* #param file: pointer to the source file name
* #param line: assert_param error line source number
* #retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

SMT32H7 (H745/H755): ADC "internal Error" with HAL

I'm using an STM32H755 (on NUCLEO-Board) with CubeIDE and trying to set up an ADC with HAL.
Without any changes to the default ADC and clock setup, the ADC goes into "error internal" state when trying to read values. Any Ideas why?
I didn't touch any ADC or clock settings, just set the runtime context in the .ioc file.
When initialized, the ADC state goes to "Ready" (after calling MX_ADC1_Init()) but after starting it with HAL_ADC_Start(&hadc1), HAL_ADC_GetError(&hadc1) and HAL_ADC_GetState(&hadc1) read the error message "error internal" and no values can be read.
Side note: with the same setup, DAC and DMA are working fine.
Here is my code (irrelevant code cut out) :
/* Private variables ---------------------------------------------------------*/
#if defined ( __ICCARM__ ) /*!< IAR Compiler */
#pragma location=0x30000000
ETH_DMADescTypeDef DMARxDscrTab[ETH_RX_DESC_CNT]; /* Ethernet Rx DMA Descriptors */
#pragma location=0x30000200
ETH_DMADescTypeDef DMATxDscrTab[ETH_TX_DESC_CNT]; /* Ethernet Tx DMA Descriptors */
#pragma location=0x30000260
uint8_t Rx_Buff[ETH_RX_DESC_CNT][ETH_MAX_PACKET_SIZE]; /* Ethernet Receive Buffers */
#elif defined ( __CC_ARM ) /* MDK ARM Compiler */
__attribute__((at(0x30000000))) ETH_DMADescTypeDef DMARxDscrTab[ETH_RX_DESC_CNT]; /* Ethernet Rx DMA Descriptors */
__attribute__((at(0x30000200))) ETH_DMADescTypeDef DMATxDscrTab[ETH_TX_DESC_CNT]; /* Ethernet Tx DMA Descriptors */
__attribute__((at(0x30000260))) uint8_t Rx_Buff[ETH_RX_DESC_CNT][ETH_MAX_PACKET_SIZE]; /* Ethernet Receive Buffer */
#elif defined ( __GNUC__ ) /* GNU Compiler */
ETH_DMADescTypeDef DMARxDscrTab[ETH_RX_DESC_CNT] __attribute__((section(".RxDecripSection"))); /* Ethernet Rx DMA Descriptors */
ETH_DMADescTypeDef DMATxDscrTab[ETH_TX_DESC_CNT] __attribute__((section(".TxDecripSection"))); /* Ethernet Tx DMA Descriptors */
uint8_t Rx_Buff[ETH_RX_DESC_CNT][ETH_MAX_PACKET_SIZE] __attribute__((section(".RxArraySection"))); /* Ethernet Receive Buffers */
#endif
ETH_TxPacketConfig TxConfig;
ADC_HandleTypeDef hadc1;
ETH_HandleTypeDef heth;
UART_HandleTypeDef huart3;
PCD_HandleTypeDef hpcd_USB_OTG_FS;
/* USER CODE BEGIN PV */
uint64_t state = 0;
uint64_t error = 0;
uint16_t value = 0;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_ETH_Init(void);
static void MX_USART3_UART_Init(void);
static void MX_USB_OTG_FS_PCD_Init(void);
static void MX_ADC1_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* #brief The application entry point.
* #retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* USER CODE BEGIN Boot_Mode_Sequence_0 */
int32_t timeout;
/* USER CODE END Boot_Mode_Sequence_0 */
/* USER CODE BEGIN Boot_Mode_Sequence_1 */
/* Wait until CPU2 boots and enters in stop mode or timeout*/
timeout = 0xFFFF;
while((__HAL_RCC_GET_FLAG(RCC_FLAG_D2CKRDY) != RESET) && (timeout-- > 0));
if ( timeout < 0 )
{
Error_Handler();
}
/* USER CODE END Boot_Mode_Sequence_1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN Boot_Mode_Sequence_2 */
/* When system initialization is finished, Cortex-M7 will release Cortex-M4 by means of
HSEM notification */
/*HW semaphore Clock enable*/
__HAL_RCC_HSEM_CLK_ENABLE();
/*Take HSEM */
HAL_HSEM_FastTake(HSEM_ID_0);
/*Release HSEM in order to notify the CPU2(CM4)*/
HAL_HSEM_Release(HSEM_ID_0,0);
/* wait until CPU2 wakes up from stop mode */
timeout = 0xFFFF;
while((__HAL_RCC_GET_FLAG(RCC_FLAG_D2CKRDY) == RESET) && (timeout-- > 0));
if ( timeout < 0 )
{
Error_Handler();
}
/* USER CODE END Boot_Mode_Sequence_2 */
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_ETH_Init();
MX_USART3_UART_Init();
MX_USB_OTG_FS_PCD_Init();
MX_ADC1_Init();
/* USER CODE BEGIN 2 */
HAL_Delay(1);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
error = HAL_ADC_GetError(&hadc1);
state = HAL_ADC_GetState(&hadc1);
HAL_ADC_Start(&hadc1);
error = HAL_ADC_GetError(&hadc1);
state = HAL_ADC_GetState(&hadc1);
HAL_ADC_PollForConversion(&hadc1, 1000);
error = HAL_ADC_GetError(&hadc1);
state = HAL_ADC_GetState(&hadc1);
value = HAL_ADC_GetValue(&hadc1);
}
/* USER CODE END 3 */
}
/**
* #brief System Clock Configuration
* #retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Supply configuration update enable
*/
HAL_PWREx_ConfigSupply(PWR_DIRECT_SMPS_SUPPLY);
/** Configure the main internal regulator output voltage
*/
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);
while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {}
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_BYPASS;
RCC_OscInitStruct.HSIState = RCC_HSI_DIV1;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 1;
RCC_OscInitStruct.PLL.PLLN = 24;
RCC_OscInitStruct.PLL.PLLP = 2;
RCC_OscInitStruct.PLL.PLLQ = 4;
RCC_OscInitStruct.PLL.PLLR = 2;
RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_3;
RCC_OscInitStruct.PLL.PLLVCOSEL = RCC_PLL1VCOWIDE;
RCC_OscInitStruct.PLL.PLLFRACN = 0;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2
|RCC_CLOCKTYPE_D3PCLK1|RCC_CLOCKTYPE_D1PCLK1;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB3CLKDivider = RCC_APB3_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_APB2_DIV1;
RCC_ClkInitStruct.APB4CLKDivider = RCC_APB4_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
{
Error_Handler();
}
}
/**
* #brief ADC1 Initialization Function
* #param None
* #retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_MultiModeTypeDef multimode = {0};
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Common config
*/
hadc1.Instance = ADC1;
hadc1.Init.Resolution = ADC_RESOLUTION_16B;
hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
hadc1.Init.LowPowerAutoWait = DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.ConversionDataManagement = ADC_CONVERSIONDATA_DR;
hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED;
hadc1.Init.LeftBitShift = ADC_LEFTBITSHIFT_NONE;
hadc1.Init.OversamplingMode = DISABLE;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure the ADC multi-mode
*/
multimode.Mode = ADC_MODE_INDEPENDENT;
if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_3;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;
sConfig.SingleDiff = ADC_SINGLE_ENDED;
sConfig.OffsetNumber = ADC_OFFSET_NONE;
sConfig.Offset = 0;
sConfig.OffsetSignedSaturation = DISABLE;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
Found the error by myself...
In the MX_ADC1_Init() function, there was the line hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV1 missing to set the adc clock. There was no option to select this setting in the .ioc file ;-/
Turns out that with the default value for hadc1.Init.ClockPrescaler in the HAL, the adc won't work

ST32F407 got HAL_ETH_ERROR_DMA when I plugin the ethernet cable

I have an STM32F407 with the ethernet PHY DP83848.
I cannot ping the device if I'm using the LwIP because I'm facing some errors.
I do the following steps to reproduce the error.
I start up my PCB board
I let the initialization do its job and I get no error back.
I plugin my ethernet cable
I ping a random device with a random number
Then my activity LED blink on the DP83848 and then I get an interrupt.
I get the error code 0x8. That means I'm facing DMA issues. But why?
/** #defgroup ETH_Error_Code ETH Error Code
* #{
*/
#define HAL_ETH_ERROR_NONE ((uint32_t)0x00000000U) /*!< No error */
#define HAL_ETH_ERROR_PARAM ((uint32_t)0x00000001U) /*!< Busy error */
#define HAL_ETH_ERROR_BUSY ((uint32_t)0x00000002U) /*!< Parameter error */
#define HAL_ETH_ERROR_TIMEOUT ((uint32_t)0x00000004U) /*!< Timeout error */
#define HAL_ETH_ERROR_DMA ((uint32_t)0x00000008U) /*!< DMA transfer error */
#define HAL_ETH_ERROR_MAC ((uint32_t)0x00000010U) /*!< MAC transfer error */
#if (USE_HAL_ETH_REGISTER_CALLBACKS == 1)
#define HAL_ETH_ERROR_INVALID_CALLBACK ((uint32_t)0x00000020U) /*!< Invalid Callback error */
#endif /* USE_HAL_ETH_REGISTER_CALLBACKS */
/**
* #}
*/
My STM32F407 does not have DMA for Ethernet. What should I do now? Is this a bug?
My complete code:
ETH_TxPacketConfig TxConfig;
ETH_DMADescTypeDef DMARxDscrTab[ETH_RX_DESC_CNT]; /* Ethernet Rx DMA Descriptors */
ETH_DMADescTypeDef DMATxDscrTab[ETH_TX_DESC_CNT]; /* Ethernet Tx DMA Descriptors */
ADC_HandleTypeDef hadc1;
CAN_HandleTypeDef hcan1;
DCMI_HandleTypeDef hdcmi;
DMA_HandleTypeDef hdma_dcmi;
ETH_HandleTypeDef heth;
RTC_HandleTypeDef hrtc;
SPI_HandleTypeDef hspi2;
TIM_HandleTypeDef htim1;
TIM_HandleTypeDef htim3;
TIM_HandleTypeDef htim4;
UART_HandleTypeDef huart5;
SRAM_HandleTypeDef hsram1;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_FSMC_Init(void);
static void MX_DCMI_Init(void);
static void MX_SPI2_Init(void);
static void MX_TIM1_Init(void);
static void MX_TIM3_Init(void);
static void MX_ADC1_Init(void);
static void MX_CAN1_Init(void);
static void MX_RTC_Init(void);
static void MX_TIM4_Init(void);
static void MX_DMA_Init(void);
static void MX_UART5_Init(void);
static void MX_ETH_Init(void);
/* USER CODE BEGIN PFP */
void demoLCD(int i);
unsigned long testFillScreen();
unsigned long testText();
unsigned long testLines(uint16_t color);
unsigned long testFastLines(uint16_t color1, uint16_t color2);
unsigned long testRects(uint16_t color);
unsigned long testFilledRects(uint16_t color1, uint16_t color2);
unsigned long testFilledCircles(uint8_t radius, uint16_t color);
unsigned long testCircles(uint8_t radius, uint16_t color);
unsigned long testTriangles();
unsigned long testFilledTriangles();
unsigned long testRoundRects();
unsigned long testFilledRoundRects();
unsigned long testDrawImage();
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
void HAL_ETH_RxAllocateCallback(uint8_t **buff){
}
void HAL_ETH_RxLinkCallback(void **pStart, void **pEnd, uint8_t *buff, uint16_t Length){
}
void HAL_ETH_TxFreeCallback(uint32_t *buff){
}
void HAL_ETH_TxCpltCallback(ETH_HandleTypeDef *heth){
}
void HAL_ETH_RxCpltCallback(ETH_HandleTypeDef *heth){
}
void HAL_ETH_ErrorCallback(ETH_HandleTypeDef *heth){
uint32_t errorCode = heth->ErrorCode;
}
void HAL_ETH_PMTCallback(ETH_HandleTypeDef *heth){
}
void HAL_ETH_WakeUpCallback(ETH_HandleTypeDef *heth){
}
/* USER CODE END 0 */
/**
* #brief The application entry point.
* #retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_FSMC_Init();
MX_DCMI_Init();
MX_SPI2_Init();
MX_TIM1_Init();
MX_TIM3_Init();
MX_ADC1_Init();
MX_CAN1_Init();
MX_RTC_Init();
MX_TIM4_Init();
MX_DMA_Init();
MX_UART5_Init();
MX_ETH_Init();
/* USER CODE BEGIN 2 */
/* Start up LCD */
HAL_GPIO_WritePin(LCD_RESET_GPIO_Port, LCD_RESET_Pin, GPIO_PIN_SET);
LCD_BL_ON();
lcdInit();
HAL_GPIO_WritePin(ETH_RESET_GPIO_Port, ETH_RESET_Pin, GPIO_PIN_RESET);
HAL_Delay(1);
HAL_GPIO_WritePin(ETH_RESET_GPIO_Port, ETH_RESET_Pin, GPIO_PIN_SET);
/* Enable interrupt */
HAL_ETH_Start_IT(&heth);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* #brief System Clock Configuration
* #retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_LSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 50;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 4;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV8;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
{
Error_Handler();
}
}
/**
* #brief ADC1 Initialization Function
* #param None
* #retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.ScanConvMode = DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DMAContinuousRequests = DISABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_0;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* #brief CAN1 Initialization Function
* #param None
* #retval None
*/
static void MX_CAN1_Init(void)
{
/* USER CODE BEGIN CAN1_Init 0 */
/* USER CODE END CAN1_Init 0 */
/* USER CODE BEGIN CAN1_Init 1 */
/* USER CODE END CAN1_Init 1 */
hcan1.Instance = CAN1;
hcan1.Init.Prescaler = 16;
hcan1.Init.Mode = CAN_MODE_NORMAL;
hcan1.Init.SyncJumpWidth = CAN_SJW_1TQ;
hcan1.Init.TimeSeg1 = CAN_BS1_1TQ;
hcan1.Init.TimeSeg2 = CAN_BS2_1TQ;
hcan1.Init.TimeTriggeredMode = DISABLE;
hcan1.Init.AutoBusOff = DISABLE;
hcan1.Init.AutoWakeUp = DISABLE;
hcan1.Init.AutoRetransmission = DISABLE;
hcan1.Init.ReceiveFifoLocked = DISABLE;
hcan1.Init.TransmitFifoPriority = DISABLE;
if (HAL_CAN_Init(&hcan1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN CAN1_Init 2 */
/* USER CODE END CAN1_Init 2 */
}
/**
* #brief DCMI Initialization Function
* #param None
* #retval None
*/
static void MX_DCMI_Init(void)
{
/* USER CODE BEGIN DCMI_Init 0 */
/* USER CODE END DCMI_Init 0 */
/* USER CODE BEGIN DCMI_Init 1 */
/* USER CODE END DCMI_Init 1 */
hdcmi.Instance = DCMI;
hdcmi.Init.SynchroMode = DCMI_SYNCHRO_HARDWARE;
hdcmi.Init.PCKPolarity = DCMI_PCKPOLARITY_RISING;
hdcmi.Init.VSPolarity = DCMI_VSPOLARITY_HIGH;
hdcmi.Init.HSPolarity = DCMI_HSPOLARITY_LOW;
hdcmi.Init.CaptureRate = DCMI_CR_ALL_FRAME;
hdcmi.Init.ExtendedDataMode = DCMI_EXTEND_DATA_8B;
hdcmi.Init.JPEGMode = DCMI_JPEG_DISABLE;
if (HAL_DCMI_Init(&hdcmi) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN DCMI_Init 2 */
/* USER CODE END DCMI_Init 2 */
}
/**
* #brief ETH Initialization Function
* #param None
* #retval None
*/
static void MX_ETH_Init(void)
{
/* USER CODE BEGIN ETH_Init 0 */
/* USER CODE END ETH_Init 0 */
static uint8_t MACAddr[6];
/* USER CODE BEGIN ETH_Init 1 */
/* USER CODE END ETH_Init 1 */
heth.Instance = ETH;
MACAddr[0] = 0x80;
MACAddr[1] = 0x80;
MACAddr[2] = 0xA2;
MACAddr[3] = 0xAE;
MACAddr[4] = 0x13;
MACAddr[5] = 0x41;
heth.Init.MACAddr = &MACAddr[0];
heth.Init.MediaInterface = HAL_ETH_RMII_MODE;
heth.Init.TxDesc = DMATxDscrTab;
heth.Init.RxDesc = DMARxDscrTab;
heth.Init.RxBuffLen = 1524;
/* USER CODE BEGIN MACADDRESS */
/* USER CODE END MACADDRESS */
if (HAL_ETH_Init(&heth) != HAL_OK)
{
Error_Handler();
}
memset(&TxConfig, 0 , sizeof(ETH_TxPacketConfig));
TxConfig.Attributes = ETH_TX_PACKETS_FEATURES_CSUM | ETH_TX_PACKETS_FEATURES_CRCPAD;
TxConfig.ChecksumCtrl = ETH_CHECKSUM_IPHDR_PAYLOAD_INSERT_PHDR_CALC;
TxConfig.CRCPadCtrl = ETH_CRC_PAD_INSERT;
/* USER CODE BEGIN ETH_Init 2 */
/* USER CODE END ETH_Init 2 */
}
/**
* #brief RTC Initialization Function
* #param None
* #retval None
*/
static void MX_RTC_Init(void)
{
/* USER CODE BEGIN RTC_Init 0 */
/* USER CODE END RTC_Init 0 */
/* USER CODE BEGIN RTC_Init 1 */
/* USER CODE END RTC_Init 1 */
/** Initialize RTC Only
*/
hrtc.Instance = RTC;
hrtc.Init.HourFormat = RTC_HOURFORMAT_24;
hrtc.Init.AsynchPrediv = 127;
hrtc.Init.SynchPrediv = 255;
hrtc.Init.OutPut = RTC_OUTPUT_DISABLE;
hrtc.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
hrtc.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
if (HAL_RTC_Init(&hrtc) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN RTC_Init 2 */
/* USER CODE END RTC_Init 2 */
}
/**
* #brief SPI2 Initialization Function
* #param None
* #retval None
*/
static void MX_SPI2_Init(void)
{
/* USER CODE BEGIN SPI2_Init 0 */
/* USER CODE END SPI2_Init 0 */
/* USER CODE BEGIN SPI2_Init 1 */
/* USER CODE END SPI2_Init 1 */
/* SPI2 parameter configuration*/
hspi2.Instance = SPI2;
hspi2.Init.Mode = SPI_MODE_MASTER;
hspi2.Init.Direction = SPI_DIRECTION_2LINES;
hspi2.Init.DataSize = SPI_DATASIZE_8BIT;
hspi2.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi2.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi2.Init.NSS = SPI_NSS_SOFT;
hspi2.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
hspi2.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi2.Init.TIMode = SPI_TIMODE_DISABLE;
hspi2.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi2.Init.CRCPolynomial = 10;
if (HAL_SPI_Init(&hspi2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SPI2_Init 2 */
/* USER CODE END SPI2_Init 2 */
}
/**
* #brief TIM1 Initialization Function
* #param None
* #retval None
*/
static void MX_TIM1_Init(void)
{
/* USER CODE BEGIN TIM1_Init 0 */
/* USER CODE END TIM1_Init 0 */
TIM_Encoder_InitTypeDef sConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM1_Init 1 */
/* USER CODE END TIM1_Init 1 */
htim1.Instance = TIM1;
htim1.Init.Prescaler = 0;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 65535;
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim1.Init.RepetitionCounter = 0;
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
sConfig.EncoderMode = TIM_ENCODERMODE_TI1;
sConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
sConfig.IC1Filter = 0;
sConfig.IC2Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
sConfig.IC2Filter = 0;
if (HAL_TIM_Encoder_Init(&htim1, &sConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM1_Init 2 */
/* USER CODE END TIM1_Init 2 */
}
/**
* #brief TIM3 Initialization Function
* #param None
* #retval None
*/
static void MX_TIM3_Init(void)
{
/* USER CODE BEGIN TIM3_Init 0 */
/* USER CODE END TIM3_Init 0 */
TIM_Encoder_InitTypeDef sConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM3_Init 1 */
/* USER CODE END TIM3_Init 1 */
htim3.Instance = TIM3;
htim3.Init.Prescaler = 0;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 65535;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
sConfig.EncoderMode = TIM_ENCODERMODE_TI1;
sConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
sConfig.IC1Filter = 0;
sConfig.IC2Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
sConfig.IC2Filter = 0;
if (HAL_TIM_Encoder_Init(&htim3, &sConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM3_Init 2 */
/* USER CODE END TIM3_Init 2 */
}
/**
* #brief TIM4 Initialization Function
* #param None
* #retval None
*/
static void MX_TIM4_Init(void)
{
/* USER CODE BEGIN TIM4_Init 0 */
/* USER CODE END TIM4_Init 0 */
TIM_Encoder_InitTypeDef sConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM4_Init 1 */
/* USER CODE END TIM4_Init 1 */
htim4.Instance = TIM4;
htim4.Init.Prescaler = 0;
htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
htim4.Init.Period = 65535;
htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
sConfig.EncoderMode = TIM_ENCODERMODE_TI1;
sConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
sConfig.IC1Filter = 0;
sConfig.IC2Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
sConfig.IC2Filter = 0;
if (HAL_TIM_Encoder_Init(&htim4, &sConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM4_Init 2 */
/* USER CODE END TIM4_Init 2 */
}
/**
* #brief UART5 Initialization Function
* #param None
* #retval None
*/
static void MX_UART5_Init(void)
{
/* USER CODE BEGIN UART5_Init 0 */
/* USER CODE END UART5_Init 0 */
/* USER CODE BEGIN UART5_Init 1 */
/* USER CODE END UART5_Init 1 */
huart5.Instance = UART5;
huart5.Init.BaudRate = 115200;
huart5.Init.WordLength = UART_WORDLENGTH_8B;
huart5.Init.StopBits = UART_STOPBITS_1;
huart5.Init.Parity = UART_PARITY_NONE;
huart5.Init.Mode = UART_MODE_TX_RX;
huart5.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart5.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart5) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN UART5_Init 2 */
/* USER CODE END UART5_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA2_CLK_ENABLE();
/* DMA interrupt init */
/* DMA2_Stream1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA2_Stream1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA2_Stream1_IRQn);
}
/**
* #brief GPIO Initialization Function
* #param None
* #retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOE_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOE, ENCODER0_REVERSE_Pin|ENCODER1_REVERSE_Pin|LCD_RESET_Pin|CAMERA_RESET_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOC, ENCODER2_REVERSE_Pin|SDCARD_CS_Pin|LDAC_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(TOUCH_CS_GPIO_Port, TOUCH_CS_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LED_LCD_ON_GPIO_Port, LED_LCD_ON_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, ETH_RESET_Pin|OUTPUT3_Pin|OUTPUT2_Pin|SIO_C_Pin
|SIO_D_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOD, OUTPUT1_Pin|OUTPUT0_Pin, GPIO_PIN_RESET);
/*Configure GPIO pins : ENCODER0_REVERSE_Pin ENCODER1_REVERSE_Pin LCD_RESET_Pin CAMERA_RESET_Pin */
GPIO_InitStruct.Pin = ENCODER0_REVERSE_Pin|ENCODER1_REVERSE_Pin|LCD_RESET_Pin|CAMERA_RESET_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);
/*Configure GPIO pins : ENCODER2_REVERSE_Pin SDCARD_CS_Pin LDAC_Pin */
GPIO_InitStruct.Pin = ENCODER2_REVERSE_Pin|SDCARD_CS_Pin|LDAC_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pin : TOUCH_CS_Pin */
GPIO_InitStruct.Pin = TOUCH_CS_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(TOUCH_CS_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : TOUCH_IRQ_Pin */
GPIO_InitStruct.Pin = TOUCH_IRQ_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(TOUCH_IRQ_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : LED_LCD_ON_Pin */
GPIO_InitStruct.Pin = LED_LCD_ON_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LED_LCD_ON_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : ETH_RESET_Pin OUTPUT3_Pin OUTPUT2_Pin */
GPIO_InitStruct.Pin = ETH_RESET_Pin|OUTPUT3_Pin|OUTPUT2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pin : INPUT2_Pin */
GPIO_InitStruct.Pin = INPUT2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(INPUT2_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : INPUT0_Pin INPUT1_Pin */
GPIO_InitStruct.Pin = INPUT0_Pin|INPUT1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pin : INPUT3_Pin */
GPIO_InitStruct.Pin = INPUT3_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(INPUT3_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : OUTPUT1_Pin OUTPUT0_Pin */
GPIO_InitStruct.Pin = OUTPUT1_Pin|OUTPUT0_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/*Configure GPIO pins : SIO_C_Pin SIO_D_Pin */
GPIO_InitStruct.Pin = SIO_C_Pin|SIO_D_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
/* FSMC initialization function */
static void MX_FSMC_Init(void)
{
/* USER CODE BEGIN FSMC_Init 0 */
/* USER CODE END FSMC_Init 0 */
FSMC_NORSRAM_TimingTypeDef Timing = {0};
/* USER CODE BEGIN FSMC_Init 1 */
/* USER CODE END FSMC_Init 1 */
/** Perform the SRAM1 memory initialization sequence
*/
hsram1.Instance = FSMC_NORSRAM_DEVICE;
hsram1.Extended = FSMC_NORSRAM_EXTENDED_DEVICE;
/* hsram1.Init */
hsram1.Init.NSBank = FSMC_NORSRAM_BANK1;
hsram1.Init.DataAddressMux = FSMC_DATA_ADDRESS_MUX_DISABLE;
hsram1.Init.MemoryType = FSMC_MEMORY_TYPE_SRAM;
hsram1.Init.MemoryDataWidth = FSMC_NORSRAM_MEM_BUS_WIDTH_16;
hsram1.Init.BurstAccessMode = FSMC_BURST_ACCESS_MODE_DISABLE;
hsram1.Init.WaitSignalPolarity = FSMC_WAIT_SIGNAL_POLARITY_LOW;
hsram1.Init.WrapMode = FSMC_WRAP_MODE_DISABLE;
hsram1.Init.WaitSignalActive = FSMC_WAIT_TIMING_BEFORE_WS;
hsram1.Init.WriteOperation = FSMC_WRITE_OPERATION_ENABLE;
hsram1.Init.WaitSignal = FSMC_WAIT_SIGNAL_DISABLE;
hsram1.Init.ExtendedMode = FSMC_EXTENDED_MODE_DISABLE;
hsram1.Init.AsynchronousWait = FSMC_ASYNCHRONOUS_WAIT_DISABLE;
hsram1.Init.WriteBurst = FSMC_WRITE_BURST_DISABLE;
hsram1.Init.PageSize = FSMC_PAGE_SIZE_NONE;
/* Timing */
Timing.AddressSetupTime = 10;
Timing.AddressHoldTime = 15;
Timing.DataSetupTime = 20;
Timing.BusTurnAroundDuration = 0;
Timing.CLKDivision = 16;
Timing.DataLatency = 17;
Timing.AccessMode = FSMC_ACCESS_MODE_A;
/* ExtTiming */
if (HAL_SRAM_Init(&hsram1, &Timing, NULL) != HAL_OK)
{
Error_Handler( );
}
/* USER CODE BEGIN FSMC_Init 2 */
/* USER CODE END FSMC_Init 2 */
}
Update:
I found a DMA error code.
I get that error from here. See arrow
/* ETH DMA Error */
if (__HAL_ETH_DMA_GET_IT(heth, ETH_DMASR_AIS))
{
if (__HAL_ETH_DMA_GET_IT_SOURCE(heth, ETH_DMAIER_AISE))
{
heth->ErrorCode |= HAL_ETH_ERROR_DMA;
/* if fatal bus error occurred */
if (__HAL_ETH_DMA_GET_IT(heth, ETH_DMASR_FBES))
{
/* Get DMA error code */
heth->DMAErrorCode = READ_BIT(heth->Instance->DMASR, (ETH_DMASR_FBES | ETH_DMASR_TPS | ETH_DMASR_RPS)); <<--- HERE!
/* Disable all interrupts */
__HAL_ETH_DMA_DISABLE_IT(heth, ETH_DMAIER_NISE | ETH_DMAIER_AISE);
/* Set HAL state to ERROR */
heth->gState = HAL_ETH_STATE_ERROR;
}
else
{
/* Get DMA error status */
heth->DMAErrorCode = READ_BIT(heth->Instance->DMASR, (ETH_DMASR_ETS | ETH_DMASR_RWTS |
ETH_DMASR_RBUS | ETH_DMASR_AIS));
/* Clear the interrupt summary flag */
__HAL_ETH_DMA_CLEAR_IT(heth, (ETH_DMASR_ETS | ETH_DMASR_RWTS |
ETH_DMASR_RBUS | ETH_DMASR_AIS));
}
The error message says that DMA is not avaiable for ETH. Is that a bug then?

How to debug stm32F0 Can RX

I have a custom stm32F0 board attached over can to a raspberry pi with a CAN shield, terminating resistors and everything. I can initiate a message on the STM32F0 and see it on the RPI side, but not vice-versa. Putting an oscilloscope on the can line, I see the message coming from the RPI. Similarly, I see the message between the can transceiver and the STM32F0, so I know the message is reaching the pin. The code for doing Rx seems straight-forward enough:
set up CAN
disable filters (by setting the filter to 0x0000)
set up can RX using HAL_CAN_ActivateNotification
set up the callback function for the can rx interrupt
Yet the interrupt never gets triggered. Is my CAN RX pin bad? How do I continue the debug process?
Here is the whole main.c:
/* USER CODE BEGIN Header */
/**
******************************************************************************
* #file : main.c
* #brief : Main program body
******************************************************************************
* #attention
*
* <h2><center>© Copyright (c) 2021 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
CAN_HandleTypeDef hcan;
SPI_HandleTypeDef hspi1;
DMA_HandleTypeDef hdma_spi1_rx;
DMA_HandleTypeDef hdma_spi1_tx;
TIM_HandleTypeDef htim3;
TIM_HandleTypeDef htim14;
TIM_HandleTypeDef htim16;
TIM_HandleTypeDef htim17;
UART_HandleTypeDef huart1;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_SPI1_Init(void);
static void MX_TIM16_Init(void);
static void MX_TIM14_Init(void);
static void MX_TIM17_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_TIM3_Init(void);
static void MX_CAN_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
CAN_TxHeaderTypeDef TxHeader;
CAN_RxHeaderTypeDef RxHeader;
uint32_t TxMailbox;
uint8_t TxData[8];
uint8_t RxData[8];
uint8_t count = 0;
uint8_t testData;
void HAL_CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *hcan){
count++;
HAL_CAN_GetRxMessage(hcan,CAN_RX_FIFO0,&RxHeader,RxData);
testData = RxData[0];
}
/* USER CODE END 0 */
/**
* #brief The application entry point.
* #retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_SPI1_Init();
MX_TIM16_Init();
MX_TIM14_Init();
MX_TIM17_Init();
MX_USART1_UART_Init();
MX_TIM3_Init();
MX_CAN_Init();
/* USER CODE BEGIN 2 */
HAL_CAN_Start(&hcan);
HAL_CAN_ActivateNotification(&hcan, CAN_IT_RX_FIFO0_MSG_PENDING);
TxHeader.DLC = 1;
TxHeader.ExtId = 0;
TxHeader.IDE = CAN_ID_STD;
TxHeader.RTR = CAN_RTR_DATA;
TxHeader.StdId = 0x103;
TxHeader.TransmitGlobalTime = DISABLE;
TxData[0] = 0xa7;
//HAL_CAN_AddTxMessage(&hcan, &TxHeader, TxData, &TxMailbox);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
// HAL_CAN_AddTxMessage(&hcan, &TxHeader, TxData, &TxMailbox);
/* Start the Transmission process */
/* if (HAL_CAN_AddTxMessage(&hcan, &TxHeader, TxData, &TxMailbox) != HAL_OK)
{
Error_Handler();
}
*/ HAL_Delay(10);
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* #brief System Clock Configuration
* #retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI48;
RCC_OscInitStruct.HSI48State = RCC_HSI48_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI48;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
{
Error_Handler();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART1;
PeriphClkInit.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK1;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}
/**
* #brief CAN Initialization Function
* #param None
* #retval None
*/
static void MX_CAN_Init(void)
{
/* USER CODE BEGIN CAN_Init 0 */
/* USER CODE END CAN_Init 0 */
/* USER CODE BEGIN CAN_Init 1 */
/* USER CODE END CAN_Init 1 */
hcan.Instance = CAN;
hcan.Init.Prescaler = 6;
hcan.Init.Mode = CAN_MODE_NORMAL;
hcan.Init.SyncJumpWidth = CAN_SJW_1TQ;
hcan.Init.TimeSeg1 = CAN_BS1_13TQ;
hcan.Init.TimeSeg2 = CAN_BS2_2TQ;
hcan.Init.TimeTriggeredMode = DISABLE;
hcan.Init.AutoBusOff = DISABLE;
hcan.Init.AutoWakeUp = DISABLE;
hcan.Init.AutoRetransmission = DISABLE;
hcan.Init.ReceiveFifoLocked = DISABLE;
hcan.Init.TransmitFifoPriority = DISABLE;
if (HAL_CAN_Init(&hcan) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN CAN_Init 2 */
CAN_FilterTypeDef filterConfig;
filterConfig.FilterActivation = ENABLE;
filterConfig.FilterBank = 0;
filterConfig.FilterFIFOAssignment = CAN_RX_FIFO0;
filterConfig.FilterIdHigh = 0x0000;
filterConfig.FilterIdLow = 0x0000;
filterConfig.FilterMaskIdHigh = 0x0000;
filterConfig.FilterMaskIdLow = 0x0000;
filterConfig.FilterMode = CAN_FILTERMODE_IDMASK;
filterConfig.FilterScale = CAN_FILTERSCALE_32BIT;
filterConfig.SlaveStartFilterBank = 14;
/* USER CODE END CAN_Init 2 */
}
/**
* #brief SPI1 Initialization Function
* #param None
* #retval None
*/
static void MX_SPI1_Init(void)
{
/* USER CODE BEGIN SPI1_Init 0 */
/* USER CODE END SPI1_Init 0 */
/* USER CODE BEGIN SPI1_Init 1 */
/* USER CODE END SPI1_Init 1 */
/* SPI1 parameter configuration*/
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_2LINES;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 7;
hspi1.Init.CRCLength = SPI_CRC_LENGTH_DATASIZE;
hspi1.Init.NSSPMode = SPI_NSS_PULSE_ENABLE;
if (HAL_SPI_Init(&hspi1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SPI1_Init 2 */
/* USER CODE END SPI1_Init 2 */
}
/**
* #brief TIM3 Initialization Function
* #param None
* #retval None
*/
static void MX_TIM3_Init(void)
{
/* USER CODE BEGIN TIM3_Init 0 */
/* USER CODE END TIM3_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM3_Init 1 */
/* USER CODE END TIM3_Init 1 */
htim3.Instance = TIM3;
htim3.Init.Prescaler = 480-1;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 65535;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM3_Init 2 */
/* USER CODE END TIM3_Init 2 */
}
/**
* #brief TIM14 Initialization Function
* #param None
* #retval None
*/
static void MX_TIM14_Init(void)
{
/* USER CODE BEGIN TIM14_Init 0 */
/* USER CODE END TIM14_Init 0 */
/* USER CODE BEGIN TIM14_Init 1 */
/* USER CODE END TIM14_Init 1 */
htim14.Instance = TIM14;
htim14.Init.Prescaler = 48000 - 1;
htim14.Init.CounterMode = TIM_COUNTERMODE_UP;
htim14.Init.Period = 10- 1;
htim14.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim14.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim14) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM14_Init 2 */
/* USER CODE END TIM14_Init 2 */
}
/**
* #brief TIM16 Initialization Function
* #param None
* #retval None
*/
static void MX_TIM16_Init(void)
{
/* USER CODE BEGIN TIM16_Init 0 */
/* USER CODE END TIM16_Init 0 */
/* USER CODE BEGIN TIM16_Init 1 */
/* USER CODE END TIM16_Init 1 */
htim16.Instance = TIM16;
htim16.Init.Prescaler = 48000 - 1;
htim16.Init.CounterMode = TIM_COUNTERMODE_UP;
htim16.Init.Period = 10000 - 1;
htim16.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim16.Init.RepetitionCounter = 0;
htim16.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim16) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM16_Init 2 */
/* USER CODE END TIM16_Init 2 */
}
/**
* #brief TIM17 Initialization Function
* #param None
* #retval None
*/
static void MX_TIM17_Init(void)
{
/* USER CODE BEGIN TIM17_Init 0 */
/* USER CODE END TIM17_Init 0 */
/* USER CODE BEGIN TIM17_Init 1 */
/* USER CODE END TIM17_Init 1 */
htim17.Instance = TIM17;
htim17.Init.Prescaler = 48000 - 1;
htim17.Init.CounterMode = TIM_COUNTERMODE_UP;
htim17.Init.Period = 4 - 1;
htim17.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim17.Init.RepetitionCounter = 0;
htim17.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim17) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM17_Init 2 */
/* USER CODE END TIM17_Init 2 */
}
/**
* #brief USART1 Initialization Function
* #param None
* #retval None
*/
static void MX_USART1_UART_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 9600;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
/* USER CODE END USART1_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Channel2_3_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel2_3_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel2_3_IRQn);
}
/**
* #brief GPIO Initialization Function
* #param None
* #retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOF_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_15, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, cs1_gpio_Pin|cs2_gpio_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : VCP_TX_Pin */
GPIO_InitStruct.Pin = VCP_TX_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF1_USART2;
HAL_GPIO_Init(VCP_TX_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : PA15 */
GPIO_InitStruct.Pin = GPIO_PIN_15;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : cs1_gpio_Pin cs2_gpio_Pin */
GPIO_InitStruct.Pin = cs1_gpio_Pin|cs2_gpio_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* #brief This function is executed in case of error occurrence.
* #retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* #brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* #param file: pointer to the source file name
* #param line: assert_param error line source number
* #retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
Turned out the problem was actually the can transceiver. It has a stby pin which needs to be explicitly grounded, not left floating. This allows me to send messages from my stm32f0 over CAN. Unfortunately receiving messages has not been so easy. But that is a question for a different post.
One weird thing was that even though the transceiver was the one having the problem, the fact that it was on standby was affecting the outputs to the can tx from the stm32f0. Almost like it could cause problems "upstream". This made it more difficult to debug.

STM32 UART/USART receive issue(without interrupt)

I am trying to transmit and receive data via UART/USART on stm32L476 discovery board to terminal on PC. I am able to transmit the data to PC, but I am not able to receive any.
My code is as follows:
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "stm32l4xx_hal.h"
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private variables ---------------------------------------------------------*/
UART_HandleTypeDef huart2;
/* USER CODE BEGIN PV */
/* Private variables ---------------------------------------------------------*/
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART2_UART_Init(void);
/* USER CODE BEGIN PFP */
/* Private function prototypes -----------------------------------------------*/
/* USER CODE END PFP */
uint8_t cmd[] = {4,7,8,9};
uint8_t data[10];
uint8_t data1[10];
uint32_t err_code = 0;
int count = 0;
/* USER CODE BEGIN 0 */
int stat_re;
int mydata = 1;
/* USER CODE END 0 */
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration----------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_USART2_UART_Init();
/* USER CODE BEGIN 2 */
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
// HAL_UART_Transmit(&huart2,(uint8_t*) cmd, 4, 5);
// HAL_Delay(1000);
/*
while (!(USART_ISR_RXNE));
mydata = (int)(USART_RDR_RDR & 0xFF);*/
HAL_UART_Receive(&huart2, data, 10, 5000 )
data1[10] = data[10];
}
}
/** System Clock Configuration
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_PeriphCLKInitTypeDef PeriphClkInit;
/**Initializes the CPU, AHB and APB busses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_MSI;
RCC_OscInitStruct.MSIState = RCC_MSI_ON;
RCC_OscInitStruct.MSICalibrationValue = 0;
RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_6;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_MSI;
RCC_OscInitStruct.PLL.PLLM = 1;
RCC_OscInitStruct.PLL.PLLN = 40;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7;
RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
/**Initializes the CPU, AHB and APB busses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART2;
PeriphClkInit.Usart2ClockSelection = RCC_USART2CLKSOURCE_SYSCLK;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
HAL_RCC_MCOConfig(RCC_MCO1, RCC_MCO1SOURCE_SYSCLK, RCC_MCODIV_1);
/**Configure the main internal regulator output voltage
*/
if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
/**Configure the Systick interrupt time
*/
HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
/**Configure the Systick
*/
HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
/* SysTick_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}
/* USART2 init function */
static void MX_USART2_UART_Init(void)
{
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
}
/** Configure pins as
* Analog
* Input
* Output
* EVENT_OUT
* EXTI
PA8 ------> RCC_MCO
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct;
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOE_CLK_ENABLE();
/*Configure GPIO pin : PB2 */
GPIO_InitStruct.Pin = GPIO_PIN_2;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pin : PE8 */
GPIO_InitStruct.Pin = GPIO_PIN_8;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);
/*Configure GPIO pin : PA8 */
GPIO_InitStruct.Pin = GPIO_PIN_8;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF0_MCO;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* #brief This function is executed in case of error occurrence.
* #param None
* #retval None
*/
void _Error_Handler(char * file, int line)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
while(1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* #brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* #param file: pointer to the source file name
* #param line: assert_param error line source number
* #retval None
*/
void assert_failed(uint8_t* file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif
/**
* #}
*/
/**
* #}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
Please let me know if you know the problem.
I have tried removing the resistor connected to the Joystick which is also connected to the receive pin of USART2.
You seem to be missing GPIO configuration.
For this particular MCU, USART2 RX alternate function can be assigned to either PA3 or PD6. TX is either PA2 or PD5. Pick the variant you need and initialize the pins - in both cases it's AF7. Also make sure the clocks for USART and GPIO are enabled.
As it is, your code blocks until 10 bytes are received or 5 seconds timeout has elapsed. Then you are trying to read 1 byte in the array, but your read is out of bounds.
To check that the UART works correctly you could try a very simple echo like this:
while(1)
{
uint8_t echo;
//Blocks indefinitely until 1 byte is received
HAL_UART_Receive(&huart2, &echo, 1, HAL_MAX_DELAY);
//Sends back the byte
HAL_UART_Transmit(&huart2, &echo, 1, HAL_MAX_DELAY);
}