Can I plot the same subset of many days in grafana - grafana

I have an interesting event that happens once a day at (say) 10:00. I would like to plot some data for a small time around then for multiple days to explore the data. Is there an easy way to do this with Grafana?
Rough sketch of what I’d like (but I’m not very picky):
A few things I tried:
Searching on the internet. I think this failed because I don’t know the right words to describe what I want
Assuming this is impossible. The reason I would expect this to be possible is that it seems somewhat common to e.g. want to plot the value of some metric during working hours only. But it also seems like something that mightn’t be needed for a reasonably steady 24/7 operation.
Setting up a dashboard with many panels with appropriate timeshifts. This is a bit fiddly to set up and I think it is hard to change the metric being looked at. It also leaves a lot of empty space and I’m not sure if it is possible to lock the y axis scale to be the same for all the panels
I assume that this isn’t currently supported and therefore I suppose the question is what the best workarounds would be. In particular I’m hoping to optimize for something that is convenient to explore the data rather than somethings that is powerful.
Some alternatives that would likely also be good for me:
Some scheme for weighting the x axis (so I could give time in the gap a weight of 0)
Some way to automatically add discontinuities to the x axis when there is no data
A few more specifics:
Grafana v8.1.8 (52edcff798)
The data is stored in VictoriaMetrics, and queried via a PromQL interface (PromQL is a subset of VictoriaMetrics’ MetricsQL. Currently I can’t make MetricsQL queries but can maybe change to do that if it would help here).

Related

Implementating spell drawing/casting mechanism in Luau (Roblox)

I am coding a spell-casting system where you draw a symbol with your wand (mouse), and it can recognize said symbol.
There are two methods I believe might work; neural networking and an "invisible grid system"
The problem with the neural networking system is that It would be (likely) suboptimal in Roblox Luau, and not be able to match the performance nor speed I wish for. (Although, I may just be lacking in neural networking knowledge. Please let me know whether I should continue to try implementing it this way)
For the invisible grid system, I thought of converting the drawing into 1s and 0s (1 = drawn, 0 = blank), then seeing if it is similar to one of the symbols. I create the symbols by making a dictionary like:
local Symbol = { -- "Answer Key" shape, looks like a tilted square
00100,
01010,
10001,
01010,
00100,
}
The problem is that user error will likely cause it to be inaccurate, like this "spell"'s blue boxes, showing user error/inaccuracy. I'm also sure that if I have multiple Symbols, comparing every value in every symbol will surely not be quick.
Do you know an algorithm that could help me do this? Or just some alternative way of doing this I am missing? Thank you for reading my post.
I'm sorry if the format on this is incorrect, this is my first stack-overflow post. I will gladly delete this post if it doesn't abide to one of the rules. ( Let me know if there are any tags I should add )
One possible approach to solving this problem is to use a template matching algorithm. In this approach, you would create a "template" for each symbol that you want to recognize, which would be a grid of 1s and 0s similar to what you described in your question. Then, when the user draws a symbol, you would convert their drawing into a grid of 1s and 0s in the same way.
Next, you would compare the user's drawing to each of the templates using a similarity metric, such as the sum of absolute differences (SAD) or normalized cross-correlation (NCC). The template with the lowest SAD or highest NCC value would be considered the "best match" for the user's drawing, and therefore the recognized symbol.
There are a few advantages to using this approach:
It is relatively simple to implement, compared to a neural network.
It is fast, since you only need to compare the user's drawing to a small number of templates.
It can tolerate some user error, since the templates can be designed to be tolerant of slight variations in the user's drawing.
There are also some potential disadvantages to consider:
It may not be as accurate as a neural network, especially for complex or highly variable symbols.
The templates must be carefully designed to be representative of the expected variations in the user's drawings, which can be time-consuming.
Overall, whether this approach is suitable for your use case will depend on the specific requirements of your spell-casting system, including the number and complexity of the symbols you want to recognize, the accuracy and speed you need, and the resources (e.g. time, compute power) that are available to you.

integrate Modelica variable without influencing state selection

I want to integrate a Modelica variable over time, just for convenience in plotting and post-processing. The variable I want to integrate over time is the power of a compressor so that I get the total energy. The first idea would be to add these lines:
Modelica.Units.SI.Power P_comp;
Modelica.Units.SI.Energy E_comp;
equation
P_comp = der(E_comp);
Is that the recommended way, or are there (better?) alternatives? Is it expected to influence the selection of dynamic states?
Assuming that those two lines are the only ones using E_comp that should work.
Basically E_comp will be part of its own separate state-selection block and changes there shouldn't influence anything else.
However, state selection consists of a number of algorithms and heuristics so it is difficult to formally guarantee that any change does not influence it.
I could imagine some strange possibilities that would break this, but I don't think anyone has implemented them - and I don't see a use-case for them (except to mess up cases like this).
And if you instead of integrating want to differentiate a signal it is a lot messier.

Does OptaPlanner have a "built-in" way to perform multi-unit score normalization?

At the moment, my problem has four metrics. Each of these measures something entirely different (each has different units, a different range, etc.) and each is weighted externally. I am using Drools for scoring.
I only have only one score level (SimpleLongScore) and I have to find a way to appropriately combine the individual scores of these metrics onto one long value
The most significant problem at the moment is that the range of values for the metrics can be wildly different.
So if, for example, after a move the score of a metric with a small possible range improves by, say, 10%, that could be completely dwarfed by an alternate move which improves the metric with a larger range's score by only 1% because OptaPlanner only considers the actual score value rather than the possible range of values and how changes affect them proportionally (to my knowledge).
So, is there a way to handle this cleanly which is already part of OptaPlanner that I cannot find?
Is the only feasible solution to implement Pareto scoring? Because that seems like a hack-y nightmare.
So far I have code/math to compute the best-possible and worst-possible scores for a metric that I access from within the Drools and then I can compute where in that range a move puts us, but this also feel quite hack-y and will cause issues with incremental scoring if we want to scale non-linearly within that range.
I keep coming back to thinking I should just just bite the bullet and implement Pareto scoring.
Thanks!
Take a look at #ConstraintConfiguration and #ConstraintWeight in the docs.
Also take a look at the chapter "explaning the score", which can exactly tell you which constraint had which score impact on the best solution found.
If, however, you need pareto optimization, so you need multiple best solutions that don't dominate each other, then know that OptaPlanner doesn't support that yet, but I know of 2 cases that implemented it in OptaPlanner by hacking BestSolutionRecaller.
That being said, 99% of the cases that think of pareto optimization, are 100% happy with #ConstraintWeight instead, because users don't want multiple best solutions (except during simulations), they just want one in production.

How to remove nodes from TensorFlow graph?

I need to write a program where part of the TensorFlow nodes need to keep being there storing some global information(mainly variables and summaries) while the other part need to be changed/reorganized as program runs.
The way I do now is to reconstruct the whole graph in every iteration. But then, I have to store and load those information manually from/to checkpoint files or numpy arrays in every iteration, which makes my code really messy and error prone.
I wonder if there is a way to remove/modify part of my computation graph instead of reset the whole graph?
Changing the structure of TensorFlow graphs isn't really possible. Specifically, there isn't a clean way to remove nodes from a graph, so removing a subgraph and adding another isn't practical. (I've tried this, and it involves surgery on the internals. Ultimately, it's way more effort than it's worth, and you're asking for maintenance headaches.)
There are some workarounds.
Your reconstruction is one of them. You seem to have a pretty good handle on this method, so I won't harp on it, but for the benefit of anyone else who stumbles upon this, a very similar method is a filtered deep copy of the graph. That is, you iterate over the elements and add them in, predicated on some condition. This is most viable if the graph was given to you (i.e., you don't have the functions that built it in the first place) or if the changes are fairly minor. You still pay the price of rebuilding the graph, but sometimes loading and storing can be transparent. Given your scenario, though, this probably isn't a good match.
Another option is to recast the problem as a superset of all possible graphs you're trying to evaluate and rely on dataflow behavior. In other words, build a graph which includes every type of input you're feeding it and only ask for the outputs you need. Good signs this might work are: your network is parametric (perhaps you're just increasing/decreasing widths or layers), the changes are minor (maybe including/excluding inputs), and your operations can handle variable inputs (reductions across a dimension, for instance). In your case, if you have only a small, finite number of tree structures, this could work well. You'll probably just need to add some aggregation or renormalization for your global information.
A third option is to treat the networks as physically split. So instead of thinking of one network with mutable components, treat the boundaries between fixed and changing pieces are inputs and outputs of two separate networks. This does make some things harder: for instance, backprop across both is now ugly (which it sounds like might be a problem for you). But if you can avoid that, then two networks can work pretty well. It ends up feeling a lot like dealing with a separate pretraining phase, which you many already be comfortable with.
Most of these workarounds have a fairly narrow range of problems that they work for, so they might not help in your case. That said, you don't have to go all-or-nothing. If partially splitting the network or creating a supergraph for just some changes works, then it might be that you only have to worry about save/restore for a few cases, which may ease your troubles.
Hope this helps!

Graph/tree representation and recursion

I'm currently writing an optimization algorithm in MATLAB, at which I completely suck, therefore I could really use your help. I'm really struggling to find a good way of representing a graph (or well more like a tree with several roots) which would look more or less like this:
alt text http://img100.imageshack.us/img100/3232/graphe.png
Basically 11/12/13 are our roots (stage 0), 2x is stage1, 3x stage2 and 4x stage3. As you can see nodes from stageX are only connected to several nodes from stage(X+1) (so they don't have to be connected to all of them).
Important: each node has to hold several values (at least 3-4), one will be it's number and at least two other variables (which will be used to optimize the decisions).
I do have a simple representation using matrices but it's really hard to maintain, so I was wondering is there a good way to do it?
Second question: when I'm done with that representation I need to calculate how good each route (from roots to the end) is (like let's say I need to compare is 11-21-31-41 the best or is 11-21-31-42 better) to do that I will be using the variables that each node holds. But the values will have to be calculated recursively, let's say we start at 11 but to calcultate how good 11-21-31-41 is we first need to go to 41, do some calculations, go to 31, do some calculations, go to 21 do some calculations and then we can calculate 11 using all the previous calculations. Same with 11-21-31-42 (we start with 42 then 31->21->11). I need to check all the possible routes that way. And here's the question, how to do it? Maybe a BFS/DFS? But I'm not quite sure how to store all the results.
Those are some lengthy questions, but I hope I'm not asking you for doing my homework (as I got all the algorithms, it's just that I'm not really good at matlab and my teacher wouldn't let me to do it in java).
Granted, it may not be the most efficient solution, but if you have access to Matlab 2008+, you can define a node class to represent your graph.
The Matlab documentation has a nice example on linked lists, which you can use as a template.
Basically, a node would have a property 'linksTo', which points to the index of the node it links to, and a method to calculate the cost of each of the links (possibly with some additional property that describe each link). Then, all you need is a function that moves down each link, and brings the cost(s) with it when it moves back up.