Related
I have a synthetic image. I want to do eigenvalue decomposition of local structure tensor (LST) of it for some edge detection purposes. I used the eigenvaluesl1 , l2 and eigenvectors e1 ,e2 of LST to generate an adaptive ellipse for each pixel of image. Unfortunately I get unequal eigenvalues l1 , l2 and so unequal semi-axes length of ellipse for homogeneous regions of my figure:
However I get good response for a simple test image:
I don't know what is wrong in my code:
function [H,e1,e2,l1,l2] = LST_eig(I,sigma1,rw)
% LST_eig - compute the structure tensor and its eigen
% value decomposition
%
% H = LST_eig(I,sigma1,rw);
%
% sigma1 is pre smoothing width (in pixels).
% rw is filter bandwidth radius for tensor smoothing (in pixels).
%
n = size(I,1);
m = size(I,2);
if nargin<2
sigma1 = 0.5;
end
if nargin<3
rw = 0.001;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% pre smoothing
J = imgaussfilt(I,sigma1);
% compute gradient using Sobel operator
Sch = [-3 0 3;-10 0 10;-3 0 3];
%h = fspecial('sobel');
gx = imfilter(J,Sch,'replicate');
gy = imfilter(J,Sch','replicate');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% compute tensors
gx2 = gx.^2;
gy2 = gy.^2;
gxy = gx.*gy;
% smooth
gx2_sm = imgaussfilt(gx2,rw); %rw/sqrt(2*log(2))
gy2_sm = imgaussfilt(gy2,rw);
gxy_sm = imgaussfilt(gxy,rw);
H = zeros(n,m,2,2);
H(:,:,1,1) = gx2_sm;
H(:,:,2,2) = gy2_sm;
H(:,:,1,2) = gxy_sm;
H(:,:,2,1) = gxy_sm;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% eigen decomposition
l1 = zeros(n,m);
l2 = zeros(n,m);
e1 = zeros(n,m,2);
e2 = zeros(n,m,2);
for i = 1:n
for j = 1:m
Hmat = zeros(2);
Hmat(:,:) = H(i,j,:,:);
[V,D] = eigs(Hmat);
D = abs(D);
l1(i,j) = D(1,1); % eigen values
l2(i,j) = D(2,2);
e1(i,j,:) = V(:,1); % eigen vectors
e2(i,j,:) = V(:,2);
end
end
Any help is appreciated.
This is my ellipse drawing code:
% determining ellipse parameteres from eigen value decomposition of LST
M = input('Enter the maximum allowed semi-major axes length: ');
I = input('Enter the input data: ');
row = size(I,1);
col = size(I,2);
a = zeros(row,col);
b = zeros(row,col);
cos_phi = zeros(row,col);
sin_phi = zeros(row,col);
for m = 1:row
for n = 1:col
a(m,n) = (l2(m,n)+eps)/(l1(m,n)+l2(m,n)+2*eps)*M;
b(m,n) = (l1(m,n)+eps)/(l1(m,n)+l2(m,n)+2*eps)*M;
cos_phi1 = e1(m,n,1);
sin_phi1 = e1(m,n,2);
len = hypot(cos_phi1,sin_phi1);
cos_phi(m,n) = cos_phi1/len;
sin_phi(m,n) = sin_phi1/len;
end
end
%% plot elliptic structuring elements using parametric equation and superimpose on the image
figure; imagesc(I); colorbar; hold on
t = linspace(0,2*pi,50);
for i = 10:10:row-10
for j = 10:10:col-10
x0 = j;
y0 = i;
x = a(i,j)/2*cos(t)*cos_phi(i,j)-b(i,j)/2*sin(t)*sin_phi(i,j)+x0;
y = a(i,j)/2*cos(t)*sin_phi(i,j)+b(i,j)/2*sin(t)*cos_phi(i,j)+y0;
plot(x,y,'r','linewidth',1);
hold on
end
end
This my new result with the Gaussian derivative kernel:
This is the new plot with axis equal:
I created a test image similar to yours (probably less complicated) as follows:
pos = yy([400,500]) + 100 * sin(xx(400)/400*2*pi);
img = gaussianlineclip(pos+50,7) + gaussianlineclip(pos-50,7);
I = double(stretch(img));
(This requires DIPimage to run)
Then ran your LST_eig on it (sigma1=1 and rw=3) and your code to draw ellipses (no change to either, except adding axis equal), and got this result:
I suspect some non-uniformity in some of the blue areas of your image, which cause very small gradients to appear. The problem with the definition of the ellipses as you use them is that, for sufficiently oriented patterns, you'll get a line even if that pattern is imperceptible. You can get around this by defining your ellipse axes lengths as follows:
a = repmat(M,size(l2)); % longest axis is always the same
b = M ./ (l2+1); % shortest axis is shorter the more important the largest eigenvalue is
The smallest eigenvalue l1 is high in regions with strong gradients but no clear direction. The above does not take this into account. One option could be to make a depend on both energy and anisotropy measures, and b depend only on energy:
T = 1000; % some threshold
r = M ./ max(l1+l2-T,1); % circle radius, smaller for higher energy
d = (l2-l1) ./ (l1+l2+eps); % anisotropy measure in range [0,1]
a = M*d + r.*(1-d); % use `M` length for high anisotropy, use `r` length for high isotropy (circle)
b = r; % use `r` width always
This way, the whole ellipse shrinks if there are strong gradients but no clear direction, whereas it stays large and circular when there are only weak or no gradients. The threshold T depends on image intensities, adjust as needed.
You should probably also consider taking the square root of the eigenvalues, as they correspond to the variance.
Some suggestions:
You can write
a = (l2+eps)./(l1+l2+2*eps) * M;
b = (l1+eps)./(l1+l2+2*eps) * M;
cos_phi = e1(:,:,1);
sin_phi = e1(:,:,2);
without a loop. Note that e1 is normalized by definition, there is no need to normalize it again.
Use Gaussian gradients instead of Gaussian smoothing followed by Sobel or Schaar filters. See here for some MATLAB implementation details.
Use eig, not eigs, when you need all eigenvalues. Especially for such a small matrix, there is no advantage to using eigs. eig seems to produce more consistent results. There is no need to take the absolute value of the eigenvalues (D = abs(D)), as they are non-negative by definition.
Your default value of rw = 0.001 is way too small, a sigma of that size has no effect on the image. The goal of this smoothing is to average gradients in a local neighborhood. I used rw=3 with good results.
Use DIPimage. There is a structuretensor function, Gaussian gradients, and a lot more useful stuff. The 3.0 version (still in development) is a major rewrite that improves significantly on dealing with vector- and matrix-valued images. I can write all of your LST_eig as follows:
I = dip_image(I);
g = gradient(I, sigma1);
H = gaussf(g*g.', rw);
[e,l] = eig(H);
% Equivalences with your outputs:
l1 = l{2};
l2 = l{1};
e1 = e{2,:};
e2 = e{1,:};
A zero mean random vector y consisting of three random variables has a 3x3 covariance matrix given by R. I need to determine the innovation representation of y i.e y= B*E using gram schmidt construction where E is the vector of uncorrelated components and B is a lower triangular matrix.
I have visited numerous pages giving tutorials on how to do this in MATLAB but only when my input is a matrix with independent column vectors. Here, I have been given covariance matrix and I can't seem to make a connection on how to utilize this matrix and implement it on MATLAB.
Following is the code I got from MathWorks site created by Reza Ahmadzadeh:
function v = GramSchmidt(v)
k = size(v,2);
for ii = 1:1:k
v(:,ii) = v(:,ii) / norm(v(:,ii));
for jj = ii+1:1:k
v(:,jj) = v(:,jj) - proj(v(:,ii),v(:,jj));
end
end
function w = proj(u,v)
% This function projects vector v on vector u
w = (dot(v,u) / dot(u,u)) * u;
end
end
I don't have such an input matrix. Or is it just that I am not able to understand this code?
Any help would be deeply appreciated. This is the first time I am working on such a project on MATLAB and a little help would really make me understand this concept much better.
I downloaded the function you refer to here and I started messing around with it. Actually, the v argument it requires is nothing but the random vector to which the Gram-Schmidt algorithm is applied, your y. Proof:
% Create sample data and check it's correlation...
y = randi(10,10,3);
y = y - repmat(mean(y),10,1);
corr(y)
% Compute the Gram-Schmidt using a well known formulation...
[Q,R] = GramSchmidt_Standard(y);
% Compute the Gram-Schmidt using the Reza formulation...
UNK = GramSchmidt_Reza(y);
% Q and UNK are identical...
Q
UNK
function [Q,R] = GramSchmidt_Standard(y)
[m,n] = size(y);
Q = zeros(m,n);
R = zeros(n,n);
for j = 1:n
v = y(:,j);
for i = 1:j-1
R(i,j) = Q(:,i).' * y(:,j);
v = v - R(i,j) * Q(:,i);
end
R(j,j) = norm(v);
Q(:,j) = v / R(j,j);
end
end
function v = GramSchmidt_Reza(v)
function w = proj(u,v)
w = (dot(v,u) / dot(u,u)) * u;
end
k = size(v,2);
for ii = 1:1:k
v(:,ii) = v(:,ii) / norm(v(:,ii));
for jj = ii+1:1:k
v(:,jj) = v(:,jj) - proj(v(:,ii),v(:,jj));
end
end
end
So you can pick the function you prefer and proceed with your computations.
I have a set of N points in k dimensions as a matrix of size N X k.
How can I find the best fitting line through these points? The line will be a plane (hyerpplane) in k dimensions. It will have k coefficients and one bias term.
Existing functions like fit seem to be usable only for points in 2 or 3 dimension.
You can fit a hyperplane (or any lower dimensional affine space) to a set of D dimensional data using Principal Component Analysis. Here's an example of fitting a plane to a set of 3D data. This is explained in more detail in the MATLAB documentation but I tried to construct the simplest example I could.
% generate some random correlated data
D = 3;
mu = zeros(1,D);
sqrt_sig = randn(D);
sigma = sqrt_sig'*sqrt_sig;
% generate 50 points in a D x 50 matrix
X = mvnrnd(mu, sigma, 50)';
% perform PCA
coeff = pca(X');
% The last principal component is normal to the best fit plane and plane goes through mean of X
a = coeff(:,D);
b = -mean(X,2)'*a;
% plane defined by a'*x + b = 0
dist = abs(a'*X+b) / norm(a);
mse = mean(dist.^2)
Edit: Added example plot of results for D = 3. I take advantage of the orthogonality of the other principal components here. Ignore the code if you want it's just to demonstrate that the plane does in fact fit the data pretty well.
% plot in 3D
X0 = bsxfun(#minus,X,mean(X,2));
b1 = coeff(:,1); b2 = coeff(:,2);
y1 = b1'*X0; y2 = b2'*X0;
y1_min = min(y1); y1_max = max(y1);
y1_span = y1_max - y1_min;
y2_min = min(y2); y2_max = max(y2);
y2_span = y2_max - y2_min;
pad = 0.2;
y1_min = y1_min - pad*y1_span;
y1_max = y1_max + pad*y1_span;
y2_min = y2_min - pad*y2_span;
y2_max = y2_max + pad*y2_span;
[y1_m,y2_m] = meshgrid(linspace(y1_min,y1_max,5), linspace(y2_min,y2_max,5));
grid = bsxfun(#plus, bsxfun(#times,y1_m(:)',b1) + bsxfun(#times,y2_m(:)',b2), mean(X,2));
x = reshape(grid(1,:),size(y1_m));
y = reshape(grid(2,:),size(y1_m));
z = reshape(grid(3,:),size(y1_m));
figure(1); clf(1);
surf(x,y,z,'FaceColor','black','FaceAlpha',0.3,'EdgeAlpha',0.6);
hold on;
plot3(X(1,:),X(2,:),X(3,:),' .');
axis equal;
axis vis3d;
Edit2: When I say "principal component" I'm being a bit sloppy (or just plain wrong) with the wording. I'm actually referring to the orthogonal basis vectors that the principal components are expressed in.
Here's a simpler solution, that just uses MATLAB's \ operator. We start with defining a plane in k dimensions:
% 0 = a + x(1) * b(1) + x(2) * b(2) + ... + x(k) * 1
k = 8;
a = randn(1);
b = randn(k-1,1);
(note that we assume b(k)=1, you can always multiply the plane parameters by any value without changing the plane).
Next we generate N random points within this plane:
N = 1000;
x = rand(N,k-1);
x(:,k) = -(a + x * b);
...sorry, it's not the best way to generate random points on the plane, but it's good enough for the demonstration here. Add noise to the points:
x = x + 0.05*randn(size(x));
To find the parameters of the plane, we solve the system of equations
% a + x(1:k-1) * b == -x(k)
in the least-squares sense. a and b are the unknowns there. We can rewrite the left-hand side as [1,x(1:k-1)] * [a;b]. If we have a matrix equation M*p=v we can solve for p by writing p=M\v:
p = [ones(N,1),x(:,1:k-1)]\(-x(:,k));
disp(['ground truth: [a,b,1] = ',mat2str([a,b',1],3)]);
disp(['estimated : [a,b,1] = ',mat2str([p',1],3)]);
This gives as output:
ground truth: [a,b,1] = [-1.35 -1.44 -1.48 1.17 0.226 -0.214 0.234 -1.59 1]
estimated : [a,b,1] = [-1.41 -1.38 -1.43 1.14 0.219 -0.195 0.221 -1.54 1]
The less noise or the more points in the dataset, the smaller the error will be of course!
I'm trying to get Matlab to take this as a function of x_1 through x_n and y_1 through y_n, where k_i and r_i are all constants.
So far my idea was to take n from the user and make two 1×n vectors called x and y, and for the x_i just pull out x(i). But I don't know how to make an arbitrary sum in MATLAB.
I also need to get the gradient of this function, which I don't know how to do either. I was thinking maybe I could make a loop and add that to the function each time, but MATLAB doesn't like that.
I don't believe a loop is necessary for this calculation. MATLAB excels at vectorized operations, so would something like this work for you?
l = 10; % how large these vectors are
k = rand(l,1); % random junk values to work with
r = rand(l,1);
x = rand(l,1);
y = rand(l,1);
vals = k(1:end-1) .* (sqrt(diff(x).^2 + diff(y).^2) - r(1:end-1)).^2;
sum(vals)
EDIT: Thanks to #Amro for correcting the formula and simplifying it with diff.
You can solve for the gradient symbolically with:
n = 10;
k = sym('k',[1 n]); % Create n variables k1, k2, ..., kn
x = sym('x',[1 n]); % Create n variables x1, x2, ..., xn
y = sym('y',[1 n]); % Create n variables y1, y2, ..., yn
r = sym('r',[1 n]); % Create n variables r1, r2, ..., rn
% Symbolically sum equation
s = sum((k(1:end-1).*sqrt((x(2:end)-x(1:end-1)).^2+(y(2:end)-y(1:end-1)).^2)-r(1:end-1)).^2)
grad_x = gradient(s,x) % Gradient with respect to x vector
grad_y = gradient(s,y) % Gradient with respect to y vector
The symbolic sum and gradients can be evaluated and converted to floating point with:
% n random data values for k, x, y, and r
K = rand(1,n);
X = rand(1,n);
Y = rand(1,n);
R = rand(1,n);
% Substitute in data for symbolic variables
S = double(subs(s,{[k,x,y,r]},{[K,X,Y,R]}))
GRAD_X = double(subs(grad_x,{[k,x,y,r]},{[K,X,Y,R]}))
GRAD_Y = double(subs(grad_y,{[k,x,y,r]},{[K,X,Y,R]}))
The gradient function is the one overloaded for symbolic variables (type help sym/gradient) or see the more detailed documentation online).
Yes, you could indeed do this with a loop, considering that x, y, k, and r are already defined.
n = length(x);
s = 0;
for j = 2 : n
s = s + k(j-1) * (sqrt((x(j) - x(j-1)).^2 + (y(j) - y(j-1)).^2) - r(j-1)).^2
end
You should derive the gradient analytically and then plug in numbers. It should not be too hard to expand these terms and then find derivatives of the resulting polynomial.
Vectorized solution is something like (I wonder why do you use sqrt().^2):
is = 2:n;
result = sum( k(is - 1) .* abs((x(is) - x(is-1)).^2 + (y(is) - y(is-1)).^2 - r(is-1)));
You can either compute gradient symbolically or rewrite this code as a function and make a standard +-eps calculation. If you need a gradient to run optimization (you code looks like a fitness function) you could use algorithms that calculate them themselves, for example, fminsearch can do this
I have an ellipse in 2 dimensions, defined by a positive definite matrix X as follows: a point x is in the ellipse if x'*X*x <= 1. How can I plot this ellipse in matlab? I've done a bit of searching while finding surprisingly little.
Figured out the answer actually: I'd post this as an answer, but it won't let me (new user):
Figured it out after a bit of tinkering. Basically, we express the points on the ellipse border (x'*X*x = 1) as a weighted combination of the eigenvectors of X, which makes some of the math to find the points easier. We can just write (au+bv)'X(au+bv)=1 and work out the relationship between a,b. Matlab code follows (sorry it's messy, just used the same notation that I was using with pen/paper):
function plot_ellipse(X, varargin)
% Plots an ellipse of the form x'*X*x <= 1
% plot vectors of the form a*u + b*v where u,v are eigenvectors of X
[V,D] = eig(X);
u = V(:,1);
v = V(:,2);
l1 = D(1,1);
l2 = D(2,2);
pts = [];
delta = .1;
for alpha = -1/sqrt(l1)-delta:delta:1/sqrt(l1)+delta
beta = sqrt((1 - alpha^2 * l1)/l2);
pts(:,end+1) = alpha*u + beta*v;
end
for alpha = 1/sqrt(l1)+delta:-delta:-1/sqrt(l1)-delta
beta = -sqrt((1 - alpha^2 * l1)/l2);
pts(:,end+1) = alpha*u + beta*v;
end
plot(pts(1,:), pts(2,:), varargin{:})
I stumbled across this post while searching for this topic, and even though it's settled, I thought I might provide another simpler solution, if the matrix is symmetric.
Another way of doing this is to use the Cholesky decomposition of the semi-definite positive matrix E implemented in Matlab as the chol function. It computes an upper triangular matrix R such that X = R' * R. Using this, x'*X*x = (R*x)'*(R*x) = z'*z, if we define z as R*x.
The curve to plot thus becomes such that z'*z=1, and that's a circle. A simple solution is thus z = (cos(t), sin(t)), for 0<=t<=2 pi. You then multiply by the inverse of R to get the ellipse.
This is pretty straightforward to translate into the following code:
function plot_ellipse(E)
% plots an ellipse of the form xEx = 1
R = chol(E);
t = linspace(0, 2*pi, 100); % or any high number to make curve smooth
z = [cos(t); sin(t)];
ellipse = inv(R) * z;
plot(ellipse(1,:), ellipse(2,:))
end
Hope this might help!