A zero mean random vector y consisting of three random variables has a 3x3 covariance matrix given by R. I need to determine the innovation representation of y i.e y= B*E using gram schmidt construction where E is the vector of uncorrelated components and B is a lower triangular matrix.
I have visited numerous pages giving tutorials on how to do this in MATLAB but only when my input is a matrix with independent column vectors. Here, I have been given covariance matrix and I can't seem to make a connection on how to utilize this matrix and implement it on MATLAB.
Following is the code I got from MathWorks site created by Reza Ahmadzadeh:
function v = GramSchmidt(v)
k = size(v,2);
for ii = 1:1:k
v(:,ii) = v(:,ii) / norm(v(:,ii));
for jj = ii+1:1:k
v(:,jj) = v(:,jj) - proj(v(:,ii),v(:,jj));
end
end
function w = proj(u,v)
% This function projects vector v on vector u
w = (dot(v,u) / dot(u,u)) * u;
end
end
I don't have such an input matrix. Or is it just that I am not able to understand this code?
Any help would be deeply appreciated. This is the first time I am working on such a project on MATLAB and a little help would really make me understand this concept much better.
I downloaded the function you refer to here and I started messing around with it. Actually, the v argument it requires is nothing but the random vector to which the Gram-Schmidt algorithm is applied, your y. Proof:
% Create sample data and check it's correlation...
y = randi(10,10,3);
y = y - repmat(mean(y),10,1);
corr(y)
% Compute the Gram-Schmidt using a well known formulation...
[Q,R] = GramSchmidt_Standard(y);
% Compute the Gram-Schmidt using the Reza formulation...
UNK = GramSchmidt_Reza(y);
% Q and UNK are identical...
Q
UNK
function [Q,R] = GramSchmidt_Standard(y)
[m,n] = size(y);
Q = zeros(m,n);
R = zeros(n,n);
for j = 1:n
v = y(:,j);
for i = 1:j-1
R(i,j) = Q(:,i).' * y(:,j);
v = v - R(i,j) * Q(:,i);
end
R(j,j) = norm(v);
Q(:,j) = v / R(j,j);
end
end
function v = GramSchmidt_Reza(v)
function w = proj(u,v)
w = (dot(v,u) / dot(u,u)) * u;
end
k = size(v,2);
for ii = 1:1:k
v(:,ii) = v(:,ii) / norm(v(:,ii));
for jj = ii+1:1:k
v(:,jj) = v(:,jj) - proj(v(:,ii),v(:,jj));
end
end
end
So you can pick the function you prefer and proceed with your computations.
Related
The formula for the discrete double Fourier series that I'm attempting to code in MATLAB is:
The coefficient in front of the trigonometric sum (Fourier amplitude) is what I'm trying to extract from the fitting of the data through the double Fourier series seen above. Using my current code, the original function is not reconstructed, therefore my coefficients cannot be correct. I'm not certain if this is of any significance or insight, but the second term for the A coefficients (Akn(1))) is 13 orders of magnitude larger than any other coefficient.
Any suggestions, modifications, or comments about my program would be greatly appreciated.
%data = csvread('digitized_plot_data.csv',1);
%xdata = data(:,1);
%ydata = data(:,2);
%x0 = xdata(1);
lambda = 20; %km
tau = 20; %s
vs = 7.6; %k/s (velocity of CHAMP satellite)
L = 4; %S
% Number of terms to use:
N = 100;
% set up matrices:
M = zeros(length(xdata),1+2*N);
M(:,1) = 1;
for k=1:N
for n=1:N %error using *, inner matrix dimensions must agree...
M(:,2*n) = cos(2*pi/lambda*k*vs*xdata).*cos(2*pi/tau*n*xdata);
M(:,2*n+1) = sin(2*pi/lambda*k*vs*xdata).*sin(2*pi/tau*n*xdata);
end
end
C = M\ydata;
%least squares coefficients:
A0 = C(1);
Akn = C(2:2:end);
Bkn = C(3:2:end);
% reconstruct original function values (verification check):
y = A0;
for k=1:length(Akn)
y = y + Akn(k)*cos(2*pi/lambda*k*vs*xdata).*cos(2*pi/tau*n*xdata) + Bkn(k)*sin(2*pi/lambda*k*vs*xdata).*sin(2*pi/tau*n*xdata);
end
% plotting
hold on
plot(xdata,ydata,'ko')
plot(xdata,yk,'b--')
legend('Data','Least Squares','location','northeast')
xlabel('Centered Time Event [s]'); ylabel('J[\muA/m^2]'); title('Single FAC Event (50 Hz)')
I have the following system, specified by the set of coefficients:
b = [1 2 3];
a = [1 .5 .25];
In the Z-Domain, such function will have the following transfer function:
H(Z) = Y(Z)/X(Z)
So the frequency response will be just the unit circle, where:
H(e^jw) = Y(e^jw)/X(e^jw)
Do I just substitute in the e^jw for 'Z' in my transfer function to obtain the frequency response of the system mathematically, on paper? Seems a bit ridiculous from my (a student's) point of view.
Have you tried freqz()? It returns the frequency response vector, h, and the corresponding angular frequency vector, w, for the digital filter with numerator and denominator polynomial coefficients stored in b and a, respectively.
In your case, simply follow the help:
[h,w]=freqz(b,a);
You do sub in e^jw for Z. This isn't ridiculous. Then you just sweep w from -pi to pi. Your freq response will be the absolute value of the result.
As Alessiox mentioned, freqz is the command you want to use in matlab.
I would indeed be as simple as substituting exp(j*w) in your transfer function. There are of course different ways to implement this with Matlab. For the purpose of illustration, I will be assuming bs are the coefficients of the x sequence and as are the coefficients of the y sequence, such that the b are in the numerator and the as are in the denominator:
A direct evaluation with Matlab could be done with:
b = [1 2 3];
a = [1 .5 .25];
N = 513; % number of points at which to evaluate the transfer function
w = linspace(0,2*pi,N);
num = 0;
for i=1:length(b)
num = num + b(i) * exp(-j*i*w);
end
den = 0;
for i=1:length(a)
den = den + a(i) * exp(-j*i*w);
end
H = num ./ den;
This would be equivalent to the following which makes use of the builtin polyval:
N = 513; % number of points at which to evaluate the transfer function
w = linspace(0,2*pi,N);
H = polyval(fliplr(b),exp(-j*w))./polyval(fliplr(a),exp(-j*w));
Also, this is really evaluating the transfer function at discrete equally spaced angular frequencies w = 2*pi*k/N which corresponds to the Discrete Fourier Transform (DFT). As such it could also be done with:
N = 512;
H = fft(b,N) ./ fft(a,N);
Incidentally this is what freqz does, so you could also get the same result with:
N = 512;
H = freqz(b,a,N,'whole');
I am trying to use meshgrid in Matlab together with Chebfun to get rid of double for loops. I first define a quasi-matrix of N functions,
%Define functions of type Chebfun
N = 10; %number of functions
x = chebfun('x', [0 8]); %Domain
psi = [];
for i = 1:N
psi = [psi sin(i.*pi.*x./8)];
end
A sample calculation would be to compute the double sum $\sum_{i,j=1}^10 psi(:,i).*psi(:,j)$. I can achieve this using two for loops in Matlab,
h = 0;
for i = 1:N
for j = 1:N
h = h + psi(:,i).*psi(:,j);
end
end
I then tried to use meshgrid to vectorize in the following way:
[i j] = meshgrid(1:N,1:N);
h = psi(:,i).*psi(:,j);
I get the error "Column index must be a vector of integers". How can I overcome this issue so that I can get rid of my double for loops and make my code a bit more efficient?
BTW, Chebfun is not part of native MATLAB and you have to download it in order to run your code: http://www.chebfun.org/. However, that shouldn't affect how I answer your question.
Basically, psi is a N column matrix and it is your desire to add up products of all combinations of pairs of columns in psi. You have the right idea with meshgrid, but what you should do instead is unroll the 2D matrix of coordinates for both i and j so that they're single vectors. You'd then use this and create two N^2 column matrices that is in such a way where each column corresponds to that exact column numbers specified from i and j sampled from psi. You'd then do an element-wise multiplication between these two matrices and sum across all of the columns for each row. BTW, I'm going to use ii and jj as variables from the output of meshgrid instead of i and j. Those variables are reserved for the complex number in MATLAB and I don't want to overshadow those unintentionally.
Something like this:
%// Your code
N = 10; %number of functions
x = chebfun('x', [0 8]); %Domain
psi = [];
for i = 1:N
psi = [psi sin(i.*pi.*x./8)];
end
%// New code
[ii,jj] = meshgrid(1:N, 1:N);
%// Create two matrices and sum
matrixA = psi(:, ii(:));
matrixB = psi(:, jj(:));
h = sum(matrixA.*matrixB, 2);
If you want to do away with the temporary variables, you can do it in one statement after calling meshgrid:
h = sum(psi(:, ii(:)).*psi(:, jj(:)), 2);
I don't have Chebfun installed, but we can verify that this calculates what we need with a simple example:
rng(123);
N = 10;
psi = randi(20, N, N);
Running this code with the above more efficient solution gives us:
>> h
h =
8100
17161
10816
12100
14641
9216
10000
8649
9025
11664
Also, running the above double for loop code also gives us:
>> h
h =
8100
17161
10816
12100
14641
9216
10000
8649
9025
11664
If you want to be absolutely sure, we can have both codes run with the outputs as separate variables, then check if they're equal:
%// Setup
rng(123);
N = 10;
psi = randi(20, N, N);
%// Old code
h = 0;
for i = 1:N
for j = 1:N
h = h + psi(:,i).*psi(:,j);
end
end
%// New code
[ii,jj] = meshgrid(1:N, 1:N);
hnew = sum(psi(:, ii(:)).*psi(:, jj(:)), 2);
%// Check for equality
eql = isequal(h, hnew);
eql checks if both variables are equal, and we do get them as such:
>> eql
eql =
1
I'm trying to get Matlab to take this as a function of x_1 through x_n and y_1 through y_n, where k_i and r_i are all constants.
So far my idea was to take n from the user and make two 1×n vectors called x and y, and for the x_i just pull out x(i). But I don't know how to make an arbitrary sum in MATLAB.
I also need to get the gradient of this function, which I don't know how to do either. I was thinking maybe I could make a loop and add that to the function each time, but MATLAB doesn't like that.
I don't believe a loop is necessary for this calculation. MATLAB excels at vectorized operations, so would something like this work for you?
l = 10; % how large these vectors are
k = rand(l,1); % random junk values to work with
r = rand(l,1);
x = rand(l,1);
y = rand(l,1);
vals = k(1:end-1) .* (sqrt(diff(x).^2 + diff(y).^2) - r(1:end-1)).^2;
sum(vals)
EDIT: Thanks to #Amro for correcting the formula and simplifying it with diff.
You can solve for the gradient symbolically with:
n = 10;
k = sym('k',[1 n]); % Create n variables k1, k2, ..., kn
x = sym('x',[1 n]); % Create n variables x1, x2, ..., xn
y = sym('y',[1 n]); % Create n variables y1, y2, ..., yn
r = sym('r',[1 n]); % Create n variables r1, r2, ..., rn
% Symbolically sum equation
s = sum((k(1:end-1).*sqrt((x(2:end)-x(1:end-1)).^2+(y(2:end)-y(1:end-1)).^2)-r(1:end-1)).^2)
grad_x = gradient(s,x) % Gradient with respect to x vector
grad_y = gradient(s,y) % Gradient with respect to y vector
The symbolic sum and gradients can be evaluated and converted to floating point with:
% n random data values for k, x, y, and r
K = rand(1,n);
X = rand(1,n);
Y = rand(1,n);
R = rand(1,n);
% Substitute in data for symbolic variables
S = double(subs(s,{[k,x,y,r]},{[K,X,Y,R]}))
GRAD_X = double(subs(grad_x,{[k,x,y,r]},{[K,X,Y,R]}))
GRAD_Y = double(subs(grad_y,{[k,x,y,r]},{[K,X,Y,R]}))
The gradient function is the one overloaded for symbolic variables (type help sym/gradient) or see the more detailed documentation online).
Yes, you could indeed do this with a loop, considering that x, y, k, and r are already defined.
n = length(x);
s = 0;
for j = 2 : n
s = s + k(j-1) * (sqrt((x(j) - x(j-1)).^2 + (y(j) - y(j-1)).^2) - r(j-1)).^2
end
You should derive the gradient analytically and then plug in numbers. It should not be too hard to expand these terms and then find derivatives of the resulting polynomial.
Vectorized solution is something like (I wonder why do you use sqrt().^2):
is = 2:n;
result = sum( k(is - 1) .* abs((x(is) - x(is-1)).^2 + (y(is) - y(is-1)).^2 - r(is-1)));
You can either compute gradient symbolically or rewrite this code as a function and make a standard +-eps calculation. If you need a gradient to run optimization (you code looks like a fitness function) you could use algorithms that calculate them themselves, for example, fminsearch can do this
I am using the matlab code from this book: http://books.google.com/books/about/Probability_Markov_chains_queues_and_sim.html?id=HdAQdzAjl60C
Here is the Code:
function [pi] = GE(Q)
A = Q';
n = size(A);
for i=1:n-1
for j=i+1:n
A(j,i) = -A(j,i)/A(i,i);
end
for j =i+1:n
for k=i+1:n
A(j,k) = A(j,k)+ A(j,i) * A(i,k);
end
end
end
x(n) = 1;
for i = n-1:-1:1
for j= i+1:n
x(i) = x(i) + A(i,j)*x(j);
end
x(i) = -x(i)/A(i,i);
end
pi = x/norm(x,1);
Is there a faster code that I am not aware of? I am calling this functions millions of times, and it takes too much time.
MATLAB has a whole set of built-in linear algebra routines - type help slash, help lu or help chol to get started with a few of the common ways to efficiently solve linear equations in MATLAB.
Under the hood these functions are generally calling optimised LAPACK/BLAS library routines, which are generally the fastest way to do linear algebra in any programming language. Compared with a "slow" language like MATLAB it would not be unexpected if they were orders of magnitude faster than an m-file implementation.
Hope this helps.
Unless you are specifically looking to implement your own, you should use Matlab's backslash operator (mldivide) or, if you want the factors, lu. Note that mldivide can do more than Gaussian elimination (e.g., it does linear least squares, when appropriate).
The algorithms used by mldivide and lu are from C and Fortran libraries, and your own implementation in Matlab will never be as fast. If, however, you are determined to use your own implementation and want it to be faster, one option is to look for ways to vectorize your implementation (maybe start here).
One other thing to note: the implementation from the question does not do any pivoting, so its numerical stability will generally be worse than an implementation that does pivoting, and it will even fail for some nonsingular matrices.
Different variants of Gaussian elimination exist, but they are all O(n3) algorithms. If any one approach is better than another depends on your particular situation and is something you would need to investigate more.
function x = naiv_gauss(A,b);
n = length(b); x = zeros(n,1);
for k=1:n-1 % forward elimination
for i=k+1:n
xmult = A(i,k)/A(k,k);
for j=k+1:n
A(i,j) = A(i,j)-xmult*A(k,j);
end
b(i) = b(i)-xmult*b(k);
end
end
% back substitution
x(n) = b(n)/A(n,n);
for i=n-1:-1:1
sum = b(i);
for j=i+1:n
sum = sum-A(i,j)*x(j);
end
x(i) = sum/A(i,i);
end
end
Let's assume Ax=d
Where A and d are known matrices.
We want to represent "A" as "LU" using "LU decomposition" function embedded in matlab thus:
LUx = d
This can be done in matlab following:
[L,U] = lu(A)
which in terms returns an upper triangular matrix in U and a permuted lower triangular matrix in L such that A = LU. Return value L is a product of lower triangular and permutation matrices. (https://www.mathworks.com/help/matlab/ref/lu.html)
Then if we assume Ly = d where y=Ux.
Since x is Unknown, thus y is unknown too, by knowing y we find x as follows:
y=L\d;
x=U\y
and the solution is stored in x.
This is the simplest way to solve system of linear equations providing that the matrices are not singular (i.e. the determinant of matrix A and d is not zero), otherwise, the quality of the solution would not be as good as expected and might yield wrong results.
if the matrices are singular thus cannot be inversed, another method should be used to solve the system of the linear equations.
For the naive approach (aka without row swapping) for an n by n matrix:
function A = naiveGauss(A)
% find's the size
n = size(A);
n = n(1);
B = zeros(n,1);
% We have 3 steps for a 4x4 matrix so we have
% n-1 steps for an nxn matrix
for k = 1 : n-1
for i = k+1 : n
% step 1: Create multiples that would make the top left 1
% printf("multi = %d / %d\n", A(i,k), A(k,k), A(i,k)/A(k,k) )
for j = k : n
A(i,j) = A(i,j) - (A(i,k)/A(k,k)) * A(k,j);
end
B(i) = B(i) - (A(i,k)/A(k,k)) * B(k);
end
end
function Sol = GaussianElimination(A,b)
[i,j] = size(A);
for j = 1:i-1
for i = j+1:i
Sol(i,j) = Sol(i,:) -( Sol(i,j)/(Sol(j,j)*Sol(j,:)));
end
end
disp(Sol);
end
I think you can use the matlab function rref:
[R,jb] = rref(A,tol)
It produces a matrix in reduced row echelon form.
In my case it wasn't the fastest solution.
The solution below was faster in my case by about 30 percent.
function C = gauss_elimination(A,B)
i = 1; % loop variable
X = [ A B ];
[ nX mX ] = size( X); % determining the size of matrix
while i <= nX % start of loop
if X(i,i) == 0 % checking if the diagonal elements are zero or not
disp('Diagonal element zero') % displaying the result if there exists zero
return
end
X = elimination(X,i,i); % proceeding forward if diagonal elements are non-zero
i = i +1;
end
C = X(:,mX);
function X = elimination(X,i,j)
% Pivoting (i,j) element of matrix X and eliminating other column
% elements to zero
[ nX mX ] = size( X);
a = X(i,j);
X(i,:) = X(i,:)/a;
for k = 1:nX % loop to find triangular form
if k == i
continue
end
X(k,:) = X(k,:) - X(i,:)*X(k,j);
end