I have a set of polygons and I want to draw the smallest possible polygon around them (it has to be a rectangular shape, all inner angles 90 degrees).
To achieve this I used the bboxPolygon function from turf.js and it works okay, but it does not take in account rotation of the polygons.
For example take a look at the image bellow, the purple line is the bboxPolygon result but there is too much space at the sides, what I ultimately try to achieve is the corners should be near the topmost points of polygon 101 and bottom most of 202. Is there some other method to use to achieve this? I tried envelope but I still get the same results...
By definition, a bbox is always aligned north/south/east/west.
In this particular case, a convex hull is probably what you want. Turf supports that with the convex method.
Related
I have image of robot with yellow markers as shown
The yellow points shown are the markers. There are two cameras used to view placed at an offset of 90 degrees. The robot bends in between the cameras. The crude schematic of the setup can be referred.
https://i.stack.imgur.com/aVyDq.png
Using the two cameras I am able to get its 3d co-ordinates of the yellow markers. But, I need to find the 3d-co-oridnates of the central point of the robot as shown.
I need to find the 3d position of the red marker points which is inside the cylindrical robot. Firstly, is it even feasible? If yes, what is the method I can use to achieve this?
As a bonus, is there any literature where they find the 3d location of such internal points which I can refer to (I searched, but could not find anything similar to my ask).
I am welcome to a theoretical solution as well(as long as it assures to find the central point within a reasonable error), which I can later translate to code.
If you know the actual dimensions, or at least, shape (e.g. perfect circle) of the white bands, then yes, it is feasible and possible.
You need to do the following steps, which are quite non trivial to do, and I won't do them here:
Optional but extremely suggested: calibrate your camera, and
undistort it.
find the equation of the projection of a 3D circle into a 2D camera, for any given rotation. You can simplify this by assuming the white line will be completely horizontal. You want some function that takes the parameters that make a circle and a rotation.
Find all white bands in the image, segment them, and make them horizontal (rotate them)
Fit points in the corrected white circle to the equation in (1). That should give you the parameters of the circle in 3d (radious, angle), if you wrote the equation right.
Now that you have an analytic equation of the actual circle (equation from 1 with parameters from 3), you can map any point from this circle (e.g. its center) to the image location. Remember to uncorrect for the rotations in step 2.
This requires understanding of curve fitting, some geometric analytical maths, and decent code skills. Not trivial, but this will provide a solution that is highly accurate.
For an inaccurate solution:
Find end points of white circles
Make line connecting endpoints
Chose center as mid point of this line.
This will be inaccurate because: choosing end points will have more error than fitting an equation with all points, ignores cone shape of view of the camera, ignores geometry.
But it may be good enough for what you want.
I have been able to extract the midpoint by fitting an ellipse to the arc visible to the camera. The centroid of the ellipse is the required midpoint.
There will be wrong ellipses as well, which can be ignored. The steps to extract the ellipse were:
Extract the markers
Binarise and skeletonise
Fit ellipse to the arc (found a matlab function for this)
Get the centroid of the ellipse
hsv_img=rgb2hsv(im);
bin=new_hsv_img(:,:,3)>marker_th; %was chosen 0.35
%skeletonise
skel=bwskel(bin);
%use regionprops to get the pixelID list
stats=regionprops(skel,'all');
for i=1:numel(stats)
el = fit_ellipse(stats(i).PixelList(:,1),stats(i).PixelList(:,2));
ellipse_draw(el.a, el.b, -el.phi, el.X0_in, el.Y0_in, 'g');
The link for fit_ellipse function
Link for ellipse_draw function
Shown Figure (1) is a typical Delaunay triangulation (blue) and it has a boundary line (black rectangle).
Each vertex in the Delaunay triangulation has a height value. So I can calculate the height inside convex hull. I am figuring out a method to calculate the height up to the boundary line (some sort of extrapolation).
There are two things associated with this task
Triangulate up to the boundary point
Figuring out the height at newly created triangle vertices
Anybody come across this issue?
Figure 1:
I'd project the convex hull points of the triangulation to the visible box segments and then insert the 4 box corners and the projected points into the triangulation.
There is no unique correct way to assign heights to the new points. One easy and stable method would be to assign to each new point the height of the closest visible convex hull vertex. Be careful with extrapolation: Triangles of the convex hull tend to have unstable slopes, see the large triangles in front of the below terrain image. Their projection to the xy plane has almost 0 area but due to the height difference they are large and almost 90 degrees to the xy plane.
I've had some luck with the following approach:
Find the segment on the convex hull that is closet to the extrapolation point
If I can drop a perpendicular onto the segment, interpolate between the two vertices of the segment.
If I can not construct the perpendicular, just use the closest vertex
This approach results in a continuous surface, but does not provide 1st derivative continuity.
You can find some code that might be helpful at TriangularFacetInterpolator.java. Look for the interpolateWithExteriorSupport method.
Im trying to calculate numerically an area of different shapes where the only thing I know about them is the (x,y) of each corner.
For example the shapes are:
P.s. The points inside the shape are for other calculation, I only need the area of the most outer shape.
Thank you.
Create polygon, and use polyarea function.
Given x,y location of corners than:
Area=polyarea(x,y)
I am working on image segmentation and I thought the convex hull can provide me with a simple solution to my problem. Currently I have polygons with for sides (see image below). Due to image processing issues, the shape does not have clean straight sides and hence when I use the standard convex hull (in Matlab) I may get more than the four main corners to define it.
My goal is to force the convex hull algorithm to find the best 4 vertices that will enclose my polygons (i.e. 4 best enclosing vertices per polygon). Is this possible? An example code will be appreciated.
Thanks
The problem of the minimum area bounding polygon is briefly mentioned in "Geometric applications of a matrix-searching algorithm" (see Applications section). It is not simple and is probably not the way for you.
For an easier (but approximate) answer to your question, you can consider the four cardinal directions and find the farthest points in these, which define a quadrilateral. (Also consider the four intermediate directions, which are more appropriate for an axis-aligned rectangle.)
If you insist having an enclosing quadrilateral, you can translate the four edges to the farthest points in the respective perpendicular directions, and find the pairwise intersections.
If you insist having a rectangle, compute the convex hull and find the minimum area or minimum perimeter bounding rectangle by the Rotating Calipers method. https://geidav.wordpress.com/tag/rotating-calipers/
I have a shape which you can imagine as a lake in a field observed from the top (2D). I determined the border pixels of the shape after an image processing, so that I have the coordinates of each border point.
Now I want to calculate the perimeter of this shape. My problem is that I have the points not in following order that would give a closed loop, but unordered.
How can a problem like this be solved in Matlab? (including Curve-Fitting-Toolbox etc.)
Thank you for any suggestions!
You can use the function regionprops for this.
Turn your image into a binary image with 1 inside your 'lake' and 0 outside (which you should be easily able to do, as you mention you extracted the boundaries).
Then use:
props=regionprops(YourBinaryImage, 'Perimeter');
You can then access the perimeter as follows: props.Perimeter
If you have set of 3D points with (x,y,z) coordinates, you may set z to zero and use the 2D (x,y) points to find the convex hull using convhull regardless of their order .