Understanding the ISO/IEC 15418 barcode specification - encoding

I'm trying to learn about scanning and reading encoded data in barcodes both 1D and 2D. ISO/IEC 15418 seems to detail very closely the data I am interested in reading. Unfortunately, the specification is not good at giving full examples of what the specification looks like in practice.
Things like Record Separators and Group Separators (see ASCII characters 29 and 30) appear out of nowhere without any definition in the ANSI specification.
ANS MH10.8.2-2016 (ISO/IEC 15418) PDF
Also relevant: ANS MH10.8.17-2017 (ISO/IEC 15434) PDF
So far, our way of explaining this is by scanning barcodes (data matrixes seem to provide data like the specification shows most commonly), reading the data and checking the document, slowly identifying patterns around how the data is structured. This specification seems to only lightly touch on the structure of data, but goes into exact detail about constituent parts.
I understand that my questions are somewhat broad and unspecific, but I can barely find anything about this specification to begin with. There's barely anything on the entirety of StackOverflow.
General Questions
Where can I find full examples and explanations of what this specification looks like in practice?
Are there any publicly available parsers or APIs surrounding this?
Where should I look for more information, ask questions etc. about this specification and ones like it?
Specific Questions
When scanning barcodes, data matrixes and QR codes, how is one supposed to easily differentiate data stored in this standard versus raw text with no particular standard applied?
a. We assume that there must be a industry standard for doing this besides "check if it kinda looks like one based on what we know".
Currently, the barcodes I am scanning seem to primarily use Data Identifiers, not Application Identifiers. However, online, I did manage to find an example of someone using an Application Identifier, and it very closely resembled a Data Identifier structure like I scanned. Assuming there will be ambiguity, what is the difference between the two?
Do 1D barcodes actually even store this kind of data? So far, I cannot remember if I've scanned a 1D barcode storing more than simple 'text'. Only Data Matrixes provide the raw encoded data from the specifiation.

Related

Approach for extracting relevant text using Azure Cognitive Search

Context:
I have a set of documents in SharePoint. I have set up Azure Cognitive Search (Standard tier) with data sources (SharePoint), index and indexers. I have also added a semantic configuration.
Outcome:
Ask a question, and have the search find and return relevant sections from the documents. I will use these sections to feed into OpenAI to construct a cohesive result.
I would like to replicate this Microsoft demo: https://www.youtube.com/watch?v=3t3qZu1Dy1k&t=572s It seems to me to create this 'demo' each document content is very small and they could easily be combined to pass into OpenAI.
My experience so far:
The results return the documents and rank them, which seems OK - however it returns a short 'caption' and the full text. The caption is not necessarily related to my question - and can therefore not be used for the next step. The full document is far too big to be used in OpenAI.
I have managed to get Semantic answers - however the question has to be so precise to get a result, and the associated text is limited.
What I would like:
I would like the search to return sub-sections of the document, where the results of my question may be. If that is not supported, I feel I need an entirely new approach.
Any ideas? Thanks in advance for your time.
The demo you refer to works by feeding documents to Azure Cognitive Search. A query is then formulated as a question that uses the Semantic Search functionality to return a set of potential semantic answers extracted from the content in the index.
These potential semantic answers are then fed as a prompt to OpenAI's text completion service: https://beta.openai.com/docs/guides/completion
First, you must ensure you can get good semantic answers. Inspect the content you have indexed and verify that it contains content that could semantically be an answer to the questions you test with. Good content should have declarations of facts. I.e., statements that could be used verbatim as an answer to a question. Examples:
The capital of France is Paris.
Forecast for 2022 is expected to be 22%.
The semantic functionality in Azure Search will only respond with a text section containing a potential answer to your question. If you can't get this step to work, you have to work on improving that. Either via semantic configuration, choice of content, or by making sure you process your content so that the items in your index contain the relevant content in the correct properties.
Ensure your content is indexed and mapped to properties in a sensible way
Work with the semantic configuration until you get sensible results
Once the previous two steps are ok, submit to OpenAI
I have tested the semantic text on two different data sets. Both were a combination of website content, PDF- and Word documents, etc. The topic and volume of content were essentially the same. From one data set, I could get excellent semantic answers. But, the other data set was disappointing.
My conclusion was that the content in the good data set was formulated and structured in a way that fits a semantic scenario. The other data set would often have logic and meaning presented in tables and layouts. As a human reading the content on paper, you would understand it. But, semantically, it would not make as much sense.

How to break up large document into smaller answer units on Retrieve and Rank?

I am still very new to Retrieve and Rank, and Document Conversion services, so I have been playing around with that lately.
I encountered a problem where when I upload a large document (100+ pages) - Retrieve and Rank would help me automatically break it up into answer units, which is great and helpful.
However, some questions only require ONE small line in the big chunks of answer units, is there a way that I can manually break further down the answer units that Retrieve and Rank service has provided me?
I heard that you can do it through JavaScript, but is there a way to do it through the UI?
I am contemplating to manually break up the huge doc into multiple smaller documents, but that could potentially lead to 100s of them - which is probably the last option that I'd resort to.
Any help or suggestions is greatly appreciated!
Thank you all!
First off, one clarification:
Retrieve and Rank does not break up your documents into answer units. That is something that the Document Conversion Service does when your conversion target is ANSWER_UNITS.
Regarding your question:
I don't fully understand exactly what you're trying to do, but if the answer units that are produced by default don't meet your requirements, you can customize different steps of the conversion process to adjust the produced answer units. Take a look at the documentation here.
Specifically, you want to make sure that the heading levels (for Word, PDF or HTML, depending on your document type) are defined in a way that
they detect the start of each answer unit. Then, make sure that the heading levels that you defined (h1, h2, h3, etc.) are included in the selector_tags list within the answer_units section.
Once your custom Document Conversion Service configuration produces the answer units you are looking for, you will be ready to send them to Retrieve and Rank to be indexed.

Implement "Did you mean?" with Core Data

I'm working on an iOS app. I have a Core Data database with a lot of company names.
When the user insert a company name that does not exist, I would like to show "similar" company names. For example, if the user entered "Aple", I would like to show "Did you mean Apple?".
I know that the technique of finding strings that match a pattern approximately (rather than exactly) is called approximate string matching or, colloquially, fuzzy string searching.
In theory, there are many algorithms, more or less valid: the Levenshtein distance computing algorithm and so on.
But in practice, is there someone who has already implemented something similar that can be used easily with core data?
I found a solution. Use this NSString's category available on GitHub: NSString-DamerauLevenshtein.
Try looking at Soundex, I believe that is part of the core featureset for SQLite, if that is your underlying data store.

How to auto-tag content, algorithms and suggestions needed

I am working with some really large databases of newspaper articles, I have them in a MySQL database, and I can query them all.
I am now searching for ways to help me tag these articles with somewhat descriptive tags.
All these articles is accessible from a URL that looks like this:
http://web.site/CATEGORY/this-is-the-title-slug
So at least I can use the category to figure what type of content that we are working with. However, I also want to tag based on the article-text.
My initial approach was doing this:
Get all articles
Get all words, remove all punctuation, split by space, and count them by occurrence
Analyze them, and filter common non-descriptive words out like "them", "I", "this", "these", "their" etc.
When all the common words was filtered out, the only thing left is words that is tag-worthy.
But this turned out to be a rather manual task, and not a very pretty or helpful approach.
This also suffered from the problem of words or names that are split by space, for example if 1.000 articles contains the name "John Doe", and 1.000 articles contains the name of "John Hanson", I would only get the word "John" out of it, not his first name, and last name.
Automatically tagging articles is really a research problem and you can spend a lot of time re-inventing the wheel when others have already done much of the work. I'd advise using one of the existing natural language processing toolkits like NLTK.
To get started, I would suggest looking at implementing a proper Tokeniser (much better than splitting by whitespace), and then take a look at Chunking and Stemming algorithms.
You might also want to count frequencies for n-grams, i.e. a sequences of words, instead of individual words. This would take care of "words split by a space". Toolkits like NLTK have functions in-built for this.
Finally, as you iteratively improve your algorithm, you might want to train on a random subset of the database and then try how the algorithm tags the remaining set of articles to see how well it works.
You should use a metric such as tf-idf to get the tags out:
Count the frequency of each term per document. This is the term frequency, tf(t, D). The more often a term occurs in the document D, the more important it is for D.
Count, per term, the number of documents the term appears in. This is the document frequency, df(t). The higher df, the less the term discriminates among your documents and the less interesting it is.
Divide tf by the log of df: tfidf(t, D) = tf(t, D) / log(df(D) + 1).
For each document, declare the top k terms by their tf-idf score to be the tags for that document.
Various implementations of tf-idf are available; for Java and .NET, there's Lucene, for Python there's scikits.learn.
If you want to do better than this, use language models. That requires some knowledge of probability theory.
Take a look at Kea. It's an open source tool for extracting keyphrases from text documents.
Your problem has also been discussed many times at http://metaoptimize.com/qa:
http://metaoptimize.com/qa/questions/1527/what-are-some-good-toolkits-to-get-lda-like-tagging-of-my-documents
http://metaoptimize.com/qa/questions/1060/tag-analysis-for-document-recommendation
If I understand your question correctly, you'd like to group the articles into similarity classes. For example, you might assign article 1 to 'Sports', article 2 to 'Politics', and so on. Or if your classes are much finer-grained, the same articles might be assigned to 'Dallas Mavericks' and 'GOP Presidential Race'.
This falls under the general category of 'clustering' algorithms. There are many possible choices of such algorithms, but this is an active area of research (meaning it is not a solved problem, and thus none of the algorithms are likely to perform quite as well as you'd like).
I'd recommend you look at Latent Direchlet Allocation (http://en.wikipedia.org/wiki/Latent_Dirichlet_allocation) or 'LDA'. I don't have personal experience with any of the LDA implementations available, so I can't recommend a specific system (perhaps others more knowledgeable than I might be able to recommend a user-friendly implementation).
You might also consider the agglomerative clustering implementations available in LingPipe (see http://alias-i.com/lingpipe/demos/tutorial/cluster/read-me.html), although I suspect an LDA implementation might prove somewhat more reliable.
A couple questions to consider while you're looking at clustering systems:
Do you want to allow fractional class membership - e.g. consider an article discussing the economic outlook and its potential effect on the presidential race; can that document belong partly to the 'economy' cluster and partly to the 'election' cluster? Some clustering algorithms allow partial class assignment and some do not
Do you want to create a set of classes manually (i.e., list out 'economy', 'sports', ...), or do you prefer to learn the set of classes from the data? Manual class labels may require more supervision (manual intervention), but if you choose to learn from the data, the 'labels' will likely not be meaningful to a human (e.g., class 1, class 2, etc.), and even the contents of the classes may not be terribly informative. That is, the learning algorithm will find similarities and cluster documents it considers similar, but the resulting clusters may not match your idea of what a 'good' class should contain.
Your approach seems sensible and there are two ways you can improve the tagging.
Use a known list of keywords/phrases for your tagging and if the count of the instances of this word/phrase is greater than a threshold (probably based on the length of the article) then include the tag.
Use a part of speech tagging algorithm to help reduce the article into a sensible set of phrases and use a sensible method to extract tags out of this. Once you have the articles reduced using such an algorithm, you would be able to identify some good candidate words/phrases to use in your keyword/phrase list for method 1.
If the content is an image or video, please check out the following blog article:
http://scottge.net/2015/06/30/automatic-image-and-video-tagging/
There are basically two approaches to automatically extract keywords from images and videos.
Multiple Instance Learning (MIL)
Deep Neural Networks (DNN), Recurrent Neural Networks (RNN), and the variants
In the above blog article, I list the latest research papers to illustrate the solutions. Some of them even include demo site and source code.
If the content is a large text document, please check out this blog article:
Best Key Phrase Extraction APIs in the Market
http://scottge.net/2015/06/13/best-key-phrase-extraction-apis-in-the-market/
Thanks, Scott
Assuming you have pre-defined set of tags, you can use the Elasticsearch Percolator API like this answer suggests:
Elasticsearch - use a "tags" index to discover all tags in a given string
Are you talking about the name-entity recognition ? if so, Anupam Jain is right. it;s research problem with using deep learning & CRF. In 2017, the name-entity recognition problem is force on semi-surprise learning technology.
The below link is related ner of paper:
http://ai2-website.s3.amazonaws.com/publications/semi-supervised-sequence.pdf
Also, The below link is key-phase extraction on twitter:
http://jkx.fudan.edu.cn/~qzhang/paper/keyphrase.emnlp2016.pdf

machine learning and code generator from strings

The problem: Given a set of hand categorized strings (or a set of ordered vectors of strings) generate a categorize function to categorize more input. In my case, that data (or most of it) is not natural language.
The question: are there any tools out there that will do that? I'm thinking of some kind of reasonably polished, download, install and go kind of things, as opposed to to some library or a brittle academic program.
(Please don't get stuck on details as the real details would restrict answers to less generally useful responses AND are under NDA.)
As an example of what I'm looking at; the input I'm wanting to filter is computer generated status strings pulled from logs. Error messages (as an example) being filtered based on who needs to be informed or what action needs to be taken.
Doing Things Manually
If the error messages are being generated automatically and the list of exceptions behind the messages is not terribly large, you might just want to have a table that directly maps each error message type to the people who need to be notified.
This should make it easy to keep track of exactly who/which-groups will be getting what types of messages and to update the routing of messages should you decide that some of the messages are being misdirected.
Typically, a small fraction of the types of errors make up a large fraction of error reports. For example, Microsoft noticed that 80% of crashes were caused by 20% of the bugs in their software. So, to get something useful, you wouldn't even need to start with a complete table covering every type of error message. Instead, you could start with just a list that maps the most common errors to the right person and routes everything else to a person for manual routing. Each time an error is routed manually, you could then add an entry to the routing table so that errors of that type are handled automatically in the future.
Document Classification
Unless the error messages are being editorialized by people who submit them and you want to use this information when routing them, I wouldn't recommend treating this as a document classification task. However, if this is what you want to do, here's a list of reasonably good packages for document document classification organized by programming language:
Python - To do this using the Python based Natural Language Toolkit (NLTK), see the Document Classification section in the freely available NLTK book.
Ruby - If Ruby is more of your thing, you can use the Classifier gem. Here's sample code that detects whether Family Guy quotes are funny or not-funny.
C# - C# programmers can use nBayes. The project's home page has sample code for a simple spam/not-spam classifier.
Java - Java folks have Classifier4J, Weka, Lucene Mahout, and as adi92 mentioned Mallet.
Learning Rules with Weka - If rules are what you want, Weka might be of particular interest, since it includes a rule set based learner. You'll find a tutorial on using Weka for text categorization here.
Mallet has a bunch of classifiers which you can train and deploy entirely from the commandline
Weka is nice too because it has a huge number of classifiers and preprocessors for you to play with
Have you tried spam or email filters? By using text files that have been marked with appropriate categories, you should be able to categorize further text input. That's what those programs do, anyway, but instead of labeling your outputs a 'spam' and 'not spam', you could do other categories.
You could also try something involving AdaBoost for a more hands-on approach to rolling your own. This library from Google looks promising, but probably doesn't meet your ready-to-deploy requirements.