The test cases in Selenium IDE, look similar to the test cases written in files in keyword-driven test frameworks.
So is it correct to say, Selenium IDE is a tool built on the concepts of keyword-driven testing
Though it seems like a keyword (Click,type,sendkeys) driven framework it is not a keyword driven framework. Logically in a keyword driven framework common tasks with respect to a specific functionality are grouped under basic keywords and these keywords are then combined to achieve a complex functionality or business flow.
According to me Selenium IDE which provides us a record and playback option is a type of linear script / structured framework that allows even a non-technical user to easily perform his tests in sequentially ordered flow. Of course , these scripts can be customized in future if required but the ultimate goal here is to automate the tests with less/no technical knowledge.
I am working on JPA project and I want to have unit tests (although as a database is required, in this case it will be more as integration tests.)
What is the best way to test JPA project? jUnit can do that ? Is there other better way ?
Thank you very much
You have given limited information on the tools/frameworks you are using and a very general question, but I will give a quick answer on the points you raise. These are just pointers however as I believe you need to do a good bit more leg-work in order for you to figure out what is best for your particular project.
Junit allows you to target your class methods with specific parameters and to examine the return values. The returned values maybe an entity that should have certain field at certain values, a list of entities with certain expected field values, exceptions etc., etc. (Whatever you methods are). You can run your test as you introduce new functionality, and re-run them to test for regression as development proceeds. You can easily test edge cases and non-nominal stuff. Getting Junit up and running in Java SE/EE is quite straight forward so that could be a good option for you to get stick-in with testing. It is one of the quicker ways I use to test new functionality.
Spring/MVC – Using an MVC framework can certainly be useful. I have used JSF/Primefaces. But that is principally because the application was to be a JSF application and such development tests gave confidence that the ‘Model’ layer provided what was needed to the rest of the framework. So this provides some confidence in the model/JPA/DB layers (it is certainly nice to see the data that is delivered) but does not provide for flexible, nimble and targeted testing you might expect from Junit.
I think Dbunit might be something to look at when you’ve made some progress with JUnit.
See http://dbunit.sourceforge.net/
DbUnit is a JUnit extension (also usable with Ant) targeted at
database-driven projects that, among other things, puts your database
into a known state between test runs. This is an excellent way to
avoid the myriad of problems that can occur when one test case
corrupts the database and causes subsequent tests to fail or
exacerbate the damage.
Is there a library/framework for Sails testing?
I don't know if there are some similarities with rails in this regard. But rails has a testing framework by default. Does sails have the same?
I've heard of Jasmine. But wanted to know what the sails team recommends.
We don't officially recommend one testing framework over another; in general our only official policy is "testing is good and you should do it!". Any testing framework that works with Node (and especially Express) will be good for testing your Sails app.
That being said, the core Sails tests use Mocha. Examining the code to those core tests, especially certain integration tests, will give you some insight into how to test a Sails app. The biggest difference between the core integration tests and what you might see in a project-level test is that the core tests create a new app on the fly, while for a project you'd just be testing the code you have.
We're also toying around with automatic test generation, although it's safe to say it's in its infancy. Then again, this is open source, so who's to say when a hero might come along and make a valuable contribution!
As many of you are aware as of the release of MatLab 2013a, xUnit a popular unit testing framework for MatLab is canceling further development.
Is MatLab's new and native unit testing framework comparable to xUnit? what features is it lacking when compared to xUnit? Is it better or worse than xUnit?
MATLAB xUnit has been an excellent contribution to the test focused development efforts of those writing MATLAB code. It has a solid implementation, it follows the xUnit paradigm very well, and has been invaluable as a file exchange contribution.
The MATLAB Unit Test framework has indeed learned from this submission as well as decades of requirements and test focused development for the MathWorks' internal code base. We have also learned and extended upon frameworks in other languages such as JUnit, NUnit, and python's unittest framework. As such there certainly are many more features in the R2013a-beyond framework, and it is designed to scale and extend.
There are too many other features to go into in a simple answer, but perhaps one way to describe some of the differences are that the 13a framework is what I loosely call an "xUnit 2.0" and the file exchange submissions is an "xUnit 1.0" framework. If you are familair with JUnit, this is like the difference between JUnit 3 and JUnit 4.
There are also other intangible or as yet unrealized benefits, such as:
The framework is included directly in MATLAB so you can share tests with others and know that they can run the tests even if they are not familiar with testing and do not want to download the file exchange framework.
The framework is under active development with a pipeline of additional features and capabilities in the works for future releases.
Hope that helps. I would be happy to go over any questions you have about specific functionality or features.
I don't believe MathWorks are planning at all to stop making xUnit available, so you can continue using it if you like. xUnit had not seen any large changes for quite a while in any case, and even though it won't be developed further in terms of features, it may receive an occasional fix if any are needed.
I have tried out the new framework quite a bit, but have not used it on any large projects yet. Previously I have used xUnit on large projects. However, I'm no expert on unit testing - so please read the following opinions in that context.
I'm pretty sure there's nothing you can do in xUnit that you can't do in the new framework. In general it's much more flexible and powerful than xUnit, providing additional features and a better way to organise and structure your tests. It's a lot easier to set up and tear down suites of tests, to manage and close resources (files, figure windows, database connections etc), and to carry out tricky tests such as checking that the right number of arguments are returned.
However, whereas a typical xUnit test was implemented as a fairly simple MATLAB function, tests in the new framework are typically implemented (in 13a, but see below for 13b) as classes using MATLAB's OO syntax, and if you're not comfortable with that it may seem like a big leap.
I should also add that although the documentation for the testing framework is excellent as reference material, I haven't found it to be great as a tutorial.
In 13b, the need to use classes has been offset a bit with the introduction of the functiontests command, which creates a test suite for you from a file containing tests implemented as local functions. That will make things much easier if you're not comfortable with class syntax. But I would think that if you want to take advantage of everything, you'd probably still want to use the main framework.
Hope my experience is of help - if you're lucky, perhaps #AndyCampbell will chime in...
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
What are the best technologies to use for behavior-driven development on the iPhone? And what are some open source example projects that demonstrate sound use of these technologies? Here are some options I've found:
Unit Testing
Test::Unit Style
OCUnit/SenTestingKit as explained in iOS Development Guide: Unit Testing Applications & other OCUnit references.
Examples: iPhoneUnitTests, Three20
CATCH
GHUnit
Google Toolbox for Mac: iPhone Unit Testing
RSpec Style
Kiwi (which also comes with mocking & expectations)
Cedar
Jasmine with UI Automation as shown in dexterous' iOS-Acceptance-Testing specs
Acceptance Testing
Selenium Style
UI Automation (works on device)
UI Automation Instruments Guide
UI Automation reference documentation
Tuneup js - cool library for using with UIAutomation.
Capturing User Interface Actions into Automation Scripts
It's possible to use Cucumber (written in JavaScript) to drive UI Automation. This would be a great open-source project. Then, we could write Gherkin to run UI Automation testing. For now, I'll just write Gherkin as comments.
UPDATE: Zucchini Framework seems to blend Cucumber & UI Automation! :)
Old Blog Posts:
Alex Vollmer's UI Automation tutorial
O'Reilly Answers UI Automation tutorial
Adi Saxena's UI Automation tutorial
UISpec with UISpecRunner
UISpec is open source on Google Code.
UISpec has comprehensive documentation.
FoneMonkey
Cucumber Style
Frank and iCuke (based on the Cucumber meets iPhone talk)
The Frank Google Group has much more activity than the iCuke Google Group.
Frank runs on both device and simulator, while iCuke only runs in simulator.
Frank seems to have a more comprehensive set of step definitions than iCuke's step definitions. And, Frank also has a step definition compendium on their wiki.
I proposed that we merge iCuke & Frank (similar to how Merb & Rails merged) since they have the same common goal: Cucumber for iOS.
KIF (Keep It Functional) by Square
Zucchini Framework uses Cucumber syntax for writing tests and uses CoffeeScript for step definitions.
Additions
OCMock for mocking
OCHamcrest and/or Expecta for expectations
Conclusion
Well, obviously, there's no right answer to this question, but here's what I'm choosing to go with currently:
For unit testing, I used to use OCUnit/SenTestingKit in XCode 4. It's simple & solid. But, I prefer the language of BDD over TDD (Why is RSpec better than Test::Unit?) because our words create our world. So now, I use Kiwi with ARC & Kiwi code completion/autocompletion. I prefer Kiwi over Cedar because it's built on top of OCUnit and comes with RSpec-style matchers & mocks/stubs. UPDATE: I'm now looking into OCMock because, currently, Kiwi doesn't support stubbing toll-free bridged objects.
For acceptance testing, I use UI Automation because it's awesome. It lets you record each test case, making writing tests automatic. Also, Apple develops it, and so it has a promising future. It also works on the device and from Instruments, which allows for other cool features, like showing memory leaks. Unfortunately, with UI Automation, I don't know how to run Objective-C code, but with Frank & iCuke you can. So, I'll just test the lower-level Objective-C stuff with unit tests, or create UIButtons only for the TEST build configuration, which when clicked, will run Objective-C code.
Which solutions do you use?
Related Questions
Is there a BDD solution that presently works well with iOS4 and Xcode4?
SenTestingKit (integrated with XCode) versus GHUnit on XCode 4 for Unit Testing?
Testing asynchronous code on iOS with OCunit
SenTestingKit in Xcode 4: Asynchronous testing?
How does unit testing on the iPhone work?
tl;dr
At Pivotal we wrote Cedar because we use and love Rspec on our Ruby projects. Cedar isn't meant to replace or compete with OCUnit; it's meant to bring the possibility of BDD-style testing to Objective C, just as Rspec pioneered BDD-style testing in Ruby, but hasn't eliminated Test::Unit. Choosing one or the other is largely a matter of style preferences.
In some cases we designed Cedar to overcome some shortcomings in the way OCUnit works for us. Specifically, we wanted to be able to use the debugger in tests, to run tests from the command line and in CI builds, and get useful text output of test results. These things may be more or less useful to you.
Long answer
Deciding between two testing frameworks like Cedar and OCUnit (for example) comes down to two things: preferred style, and ease of use. I'll start with the style, because that's simply a matter of opinion and preference; ease of use tends to be a set of tradeoffs.
Style considerations transcend what technology or language you use. xUnit-style unit testing has been around for far longer than BDD-style testing, but the latter has rapidly gained in popularity, largely due to Rspec.
The primary advantage of xUnit-style testing is its simplicity, and wide adoption (amongst developers who write unit tests); nearly any language you could consider writing code in has an xUnit-style framework available.
BDD-style frameworks tend to have two main differences when compared to xUnit-style: how you structure the test (or specs), and the syntax for writing your assertions. For me, the structural difference is the main differentiator. xUnit tests are one-dimensional, with one setUp method for all tests in a given test class. The classes that we test, however, aren't one-dimensional; we often need to test actions in several different, potentially conflicting, contexts. For example, consider a simple ShoppingCart class, with an addItem: method (for the purposes of this answer I'll use Objective C syntax). The behavior of this method may differ when the cart is empty compared to when the cart contains other items; it may differ if the user has entered a discount code; it may differ if the specified item can't be shipped by the selected shipping method; etc. As these possible conditions intersect with one another you end up with a geometrically increasing number of possible contexts; in xUnit-style testing this often leads to a lot of methods with names like testAddItemWhenCartIsEmptyAndNoDiscountCodeAndShippingMethodApplies. The structure of BDD-style frameworks allows you to organize these conditions individually, which I find makes it easier to make sure I cover all cases, as well as easier to find, change, or add individual conditions. As an example, using Cedar syntax, the method above would look like this:
describe(#"ShoppingCart", ^{
describe(#"addItem:", ^{
describe(#"when the cart is empty", ^{
describe(#"with no discount code", ^{
describe(#"when the shipping method applies to the item", ^{
it(#"should add the item to the cart", ^{
...
});
it(#"should add the full price of the item to the overall price", ^{
...
});
});
describe(#"when the shipping method does not apply to the item", ^{
...
});
});
describe(#"with a discount code", ^{
...
});
});
describe(#"when the cart contains other items, ^{
...
});
});
});
In some cases you'll find contexts in that contain the same sets of assertions, which you can DRY up using shared example contexts.
The second main difference between BDD-style frameworks and xUnit-style frameworks, assertion (or "matcher") syntax, simply makes the style of the specs somewhat nicer; some people really like it, others don't.
That leads to the question of ease of use. In this case, each framework has its pros and cons:
OCUnit has been around much longer than Cedar, and is integrated directly into Xcode. This means it's simple to make a new test target, and, most of the time, getting tests up and running "just works." On the other hand, we found that in some cases, such as running on an iOS device, getting OCUnit tests to work was nigh impossible. Setting up Cedar specs takes some more work than OCUnit tests, since you have get the library and link against it yourself (never a trivial task in Xcode). We're working on making setup easier, and any suggestions are more than welcome.
OCUnit runs tests as part of the build. This means you don't need to run an executable to make your tests run; if any tests fail, your build fails. This makes the process of running tests one step simpler, and test output goes directly into your build output window which makes it easy to see. We chose to have Cedar specs build into an executable which you run separately for a few reasons:
We wanted to be able to use the debugger. You run Cedar specs just like you would run any other executable, so you can use the debugger in the same way.
We wanted easy console logging in tests. You can use NSLog() in OCUnit tests, but the output goes into the build window where you have to unfold the build step in order to read it.
We wanted easy to read test reporting, both on the command line and in Xcode. OCUnit results appear nicely in the build window in Xcode, but building from the command line (or as part of a CI process) results in test output intermingled with lots and lots of other build output. With separate build and run phases Cedar separates the output so the test output is easy to find. The default Cedar test runner copies the standard style of printing "." for each passing spec, "F" for failing specs, etc. Cedar also has the ability to use custom reporter objects, so you can have it output results any way you like, with a little effort.
OCUnit is the official unit testing framework for Objective C, and is supported by Apple. Apple has basically limitless resources, so if they want something done it will get done. And, after all, this is Apple's sandbox we're playing in. The flip side of that coin, however, is that Apple receives on the order of a bajillion support requests and bug reports each day. They're remarkably good about handling them all, but they may not be able to handle issues you report immediately, or at all. Cedar is much newer and less baked than OCUnit, but if you have questions or problems or suggestions send a message to the Cedar mailing list (cedar-discuss#googlegroups.com) and we'll do what we can to help you out. Also, feel free to fork the code from Github (github.com/pivotal/cedar) and add whatever you think is missing. We make our testing frameworks open source for a reason.
Running OCUnit tests on iOS devices can be difficult. Honestly, I haven't tried this for quite some time, so it may have gotten easier, but the last time I tried I simply couldn't get OCUnit tests for any UIKit functionality to work. When we wrote Cedar we made sure that we could test UIKit-dependent code both on the simulator and on devices.
Finally, we wrote Cedar for unit testing, which means it's not really comparable with projects like UISpec. It's been quite a while since I tried using UISpec, but I understood it to be focused primarily on programmatically driving the UI on an iOS device. We specifically decided not to try to have Cedar support these types of specs, since Apple was (at the time) about to announce UIAutomation.
I'm going to have to toss Frank into the acceptance testing mix. This is a fairly new addition but has worked excellent for me so far. Also, it is actually being actively worked on, unlike icuke and the others.
For test driven development, I like to use GHUnit, its a breeze to set up, and works great for debugging too.
Great List!
I found another interesting solution for UI testing iOS applications.
Zucchini Framework
It is based on UIAutomation.
The framework let you write screen centric scenarios in Cucumber like style.
The scenarios can be executed in Simulator and on device from a console (it is CI friendly).
The assertions are screenshot based. Sounds inflexible, but it gets you nice HTML report, with highlighted screen comparison and you can provide masks which define the regions you want to have pixel exact assertion.
Each screen has to be described in CoffeScript and the tool it self is written in ruby.
It is kind of polyglott nightmare, but the tool provides a nice abstraction for UIAutomation and when the screens are described it is manageable even for QA person.
I would choose iCuke for acceptance tests and Cedar for unit tests. UIAutomation is a step in the right direction for Apple, but the tools need better support for continuous integration; automatically running UIAutomation tests with Instruments is currently not possible, for example.
GHUnit is good for unit tests; for integration tests, I've used UISpec with some success (github fork here: https://github.com/drync/UISpec), but am looking forward to trying iCuke, since it promises to be a lightweight setup, and you can use the rails testing goodness, like RSpec and Cucumber.
I currently use specta for rspec like setups and it's partner (as mentioned above) expecta which has ton's of awesome matching options.
I happen to really like OCDSpec2 but I'm biased, I wrote OCDSpec and contribute to the second.
It's very fast even on iOS, in part because it's built from the ground up rather than being put on top of OCUnit. It has an RSpec/Jasmine syntax as well.
https://github.com/ericmeyer/ocdspec2