How do I find the point intersecting a line? - flutter

If I have the following chart in Flutter:
Where the green graph is a Path object with many lineTo segments, how do I find the y-coordinate for a point with a given x-coordinate?
As you can see in the image, there is a gray dotted line at a specific point on the x-axis and I want to draw a point where it intersects with the green graph.
Here is an example path:
final path = Path();
path.moveTo(0, 200);
path.lineTo(10, 210);
path.lineTo(30, 190);
path.lineTo(55, 150);
path.lineTo(80, 205);
path.lineTo(100, 0);
And I want to find the y-coordinate for the point at dx = 75.

The easiest way to achieve this for any path that only has a single point for every x (i.e. where there is only a single graph / line from left to right) is using the binary search algorithm.
You can then simply use the distance of the path, which is obtained using Path.computeMetrics, to perform binary search and find the offset via Path.getTangentForOffset:
const searchDx = 75;
const iterations = 12;
final pathMetric = path.computeMetrics().first;
final pathDistance = pathMetric.length;
late Offset closestOffset;
var closestDistance = pathDistance / 2;
for (var n = 1; n <= iterations; n++) {
closestOffset = pathMetric.getTangentForOffset(closestDistance)!.position;
if (closestOffset.dx == searchDx) break;
final change = pathDistance / pow(2, n);
if (closestOffset.dx < searchDx) {
closestDistance += change;
} else {
closestDistance -= change;
}
}
print(closestOffset); // Offset(75.0, 193.9)
Note that if you want to run significantly more iterations (which should not be necessary due to the nature of binary search), you should replace final change = pathDistance / pow(2, n); by a cheaper operation like storing the left and right points of your current search interval.
You can find the full working code as an example on Dartpad.

Related

Prevent plotting random points near to the existing lines [flutter]

So I have an application where I'm generating random offsets. The generation and plotting process is working just fine but sometimes the new points generated are very near to the point line. How can I update those points such that they don't appear near to an already plotted line? Here is my current code for generating the values:
// list to store the offsets
final List<Offset> offsets = [];
// generating 5 random offsets
for (int i = 0; i < points; i++) {
// width random ranges from 20% of width to 80% of width
double randomWidth =
Random().nextInt((width * .6).toInt()) + (width * .2);
// height random ranges from 20% of height to 80% of height
double randomHeight =
Random().nextInt((height * .6).toInt()) + (height * .2);
// adding the offset to the list
offsets.add(Offset(randomWidth, randomHeight));
// generating the lines polygon
canvas.drawPoints(ui.PointMode.polygon, offsets, paint);
}
Here is the output that I don't want where the points are near to another line:
These are good ones:
Are there any algorithms or something to help with this?

Calculate distance between the area surrounded by a Path and a specific point in Flutter

According to the documentation for Path:
Closed sub-paths enclose a (possibly discontiguous) region of the plane based on the current fillType.
As far as I understand this implies that when a Path object is closed it surrounds a two dimensional area.
When the user clicks on a point of the screen I want to calculate the distance between the point that the user clicks and the area that's surrounded by the path. I get the point that the user clicks via GestureDetector/onPanDown but I have trouble figuring out how to calculate the distance to the path (or the area surrounded by the path). All the functions that Path offers seem to return void or bool but no distances.
Imagine for illustration: (red is the Path object when I draw it to the screen and the X is supposed to be where my user clicks; the distance between the two represented by the green line is what I'm interested in)
How do I calculate the distance?
First of all traverse through all points of the path.
and for each point find out the distance to clicked position and hold the shortest one.
So to get the points of the path use PathMetrics.
double getShortestDistance(Path path, Offset clickedPoint) {
PathMetrics pathMetrics = path.computeMetrics();
double minDistance;
pathMetrics.toList().forEach((element) {
for (var i = 0; i < element.length; i++) {
Tangent tangent = element.getTangentForOffset(i.toDouble());
Offset pos = tangent.position;
double distance = getDistance(pos,clickedPoint);
if(minDistance==null||distance<minDistance) {
minDistance = distance;
}
}
});
return minDistance;
}
double getDistance(Offset pos, Offset clickedPoint) {
double dx = pos.dx-clickedPoint.dx;
double dy = pos.dy-clickedPoint.dy;
double distance = sqrt(dx*dx+dy*dy);
return distance.abs();
}
got reference from here

Moving an object along a path with constant speed

I have an object path composed by a polyline (3D point array) with points VERY unevenly distributed. I need to move an object at constant speed using a timer with interval set at 10 ms.
Unevenly distributed points produce variable speed to the human eye. So now I need to decide how to treat this long array of 3D points.
The first idea I got was to subdivide long segments in smaller parts. It works better but where points are jam-packed the problem persists.
What's the best approach in these cases? Another idea, could be to simplify the original path using Ramer–Douglas–Peucker algorithm, then to subdivide it evenly again but I'm not sure if it will fully resolve my problem.
This should be a fairly common problem in many areas of the 3D graphics, so does a proven approach exist?
I made a JavaScript pen for you https://codepen.io/dawken/pen/eYpxRmN?editors=0010 but it should be very similar in any other language. Click on the rect to add points.
You have to maintain a time dependent distance with constant speed, something like this:
const t = currentTime - startTime;
const distance = (t * speed) % totalLength;
Then you have to find the two points in the path such that the current distance is intermediate between the "distance" on the path; you store the "distance from start of the path" on each point {x, y, distanceFromStart}. The first point points[i] such that distance < points[i].distanceFromStart is your destination; the point before that points[i - 1] is your source. You need to interpolate linearly between them.
Assuming that you have no duplicate points (otherwise you get a division by zero) you could do something like this.
for (let i = 0; i < points.length; i++) {
if (distance < points[i].distanceFromStart) {
const pFrom = points[i - 1];
const pTo = points[i];
const f = (distance - pFrom.distanceFromStart) / (pTo.distanceFromStart- pFrom.distanceFromStart);
const x = pFrom.x + (pTo.x - pFrom.x) * f;
const y = pFrom.y + (pTo.y - pFrom.y) * f;
ctx.fillRect(x - 1, y - 1, 3, 3);
break;
}
}
See this pen. Click on the rectangle to add points: https://codepen.io/dawken/pen/eYpxRmN?editors=0010

Bad Orientation of Principal Axis of a Point Cloud

I'm trying to calculate the principal axis via principal component analysis. I have a pointcloud and use for this the Point Cloud Library (pcl). Furthermore, I try to visualize the principal axis I calculated in rviz with markers. Here is the code snipped I use:
void computePrincipalAxis(const PointCloud& cloud, Eigen::Vector4f& centroid, Eigen::Matrix3f& evecs, Eigen::Vector3f& evals) {
Eigen::Matrix3f covariance_matrix;
pcl::computeCovarianceMatrix(cloud, centroid, covariance_matrix);
pcl::eigen33(covariance_matrix, evecs, evals);
}
void createArrowMarker(Eigen::Vector3f& vec, int id, double length) {
visualization_msgs::Marker marker;
marker.header.frame_id = frameId;
marker.header.stamp = ros::Time();
marker.id = id;
marker.type = visualization_msgs::Marker::ARROW;
marker.action = visualization_msgs::Marker::ADD;
marker.pose.position.x = centroid[0];
marker.pose.position.y = centroid[1];
marker.pose.position.z = centroid[2];
marker.pose.orientation.x = vec[0];
marker.pose.orientation.y = vec[1];
marker.pose.orientation.z = vec[2];
marker.pose.orientation.w = 1.0;
marker.scale.x = length;
marker.scale.y = 0.02;
marker.scale.z = 0.02;
marker.color.a = 1.0;
marker.color.r = 1.0;
marker.color.g = 1.0;
marker.color.b = 0.0;
featureVis.markers.push_back(marker);
}
Eigen::Vector4f centroid;
Eigen::Matrix3f evecs;
Eigen::Vector3f evals;
// Table is the pointcloud of the table only.
pcl::compute3DCentroid(*table, centroid);
computePrincipalAxis(*table, centroid, evecs, evals);
Eigen::Vector3f vec;
vec << evecs.col(0);
createArrowMarker(vec, 1, evals[0]);
vec << evecs.col(1);
createArrowMarker(vec, 2, evals[1]);
vec << evecs.col(2);
createArrowMarker(vec, 3, evals[2]);
publish();
This results in the following visualization:
I'm aware that the scale is not very perfect. The two longer arrows are much too long. But I'm confused about a few things:
I think the small arrow should go either up, or downwards.
What does the value orientation.w of the arrow's orientation mean?
Do you have some hints what I did wrong?
Orientations are represented by Quaternions in ROS, not by directional vectors. Quaternions can be a bit unintuitive, but fortunately there are some helper functions in the tf package, to generate quaternions, for example, from roll/pitch/yaw-angles.
One way to fix the marker would therefore be, to convert the direction vector into a quaternion.
In your special case, there is a much simpler solution, though: Instead of setting origin and orientation of the arrow, it is also possible to define start and end point (see ROS wiki about marker types). So instead of setting the pose attribute, just add start and end point to the points attribute:
float k = 1.0; // optional to scale the length of the arrows
geometry_msgs::Point p;
p.x = centroid[0];
p.y = centroid[1];
p.z = centroid[2];
marker.points.push_back(p);
p.x += k * vec[0];
p.y += k * vec[1];
p.z += k * vec[2];
marker.points.push_back(p);
You can set k to some value < 1 to reduce the length of the arrows.

Projection of circular region of interest onto rectangle [duplicate]

BOUNTY STATUS UPDATE:
I discovered how to map a linear lens, from destination coordinates to source coordinates.
How do you calculate the radial distance from the centre to go from fisheye to rectilinear?
1). I actually struggle to reverse it, and to map source coordinates to destination coordinates. What is the inverse, in code in the style of the converting functions I posted?
2). I also see that my undistortion is imperfect on some lenses - presumably those that are not strictly linear. What is the equivalent to-and-from source-and-destination coordinates for those lenses? Again, more code than just mathematical formulae please...
Question as originally stated:
I have some points that describe positions in a picture taken with a fisheye lens.
I want to convert these points to rectilinear coordinates. I want to undistort the image.
I've found this description of how to generate a fisheye effect, but not how to reverse it.
There's also a blog post that describes how to use tools to do it; these pictures are from that:
(1) : SOURCE Original photo link
Input : Original image with fish-eye distortion to fix.
(2) : DESTINATION Original photo link
Output : Corrected image (technically also with perspective correction, but that's a separate step).
How do you calculate the radial distance from the centre to go from fisheye to rectilinear?
My function stub looks like this:
Point correct_fisheye(const Point& p,const Size& img) {
// to polar
const Point centre = {img.width/2,img.height/2};
const Point rel = {p.x-centre.x,p.y-centre.y};
const double theta = atan2(rel.y,rel.x);
double R = sqrt((rel.x*rel.x)+(rel.y*rel.y));
// fisheye undistortion in here please
//... change R ...
// back to rectangular
const Point ret = Point(centre.x+R*cos(theta),centre.y+R*sin(theta));
fprintf(stderr,"(%d,%d) in (%d,%d) = %f,%f = (%d,%d)\n",p.x,p.y,img.width,img.height,theta,R,ret.x,ret.y);
return ret;
}
Alternatively, I could somehow convert the image from fisheye to rectilinear before finding the points, but I'm completely befuddled by the OpenCV documentation. Is there a straightforward way to do it in OpenCV, and does it perform well enough to do it to a live video feed?
The description you mention states that the projection by a pin-hole camera (one that does not introduce lens distortion) is modeled by
R_u = f*tan(theta)
and the projection by common fisheye lens cameras (that is, distorted) is modeled by
R_d = 2*f*sin(theta/2)
You already know R_d and theta and if you knew the camera's focal length (represented by f) then correcting the image would amount to computing R_u in terms of R_d and theta. In other words,
R_u = f*tan(2*asin(R_d/(2*f)))
is the formula you're looking for. Estimating the focal length f can be solved by calibrating the camera or other means such as letting the user provide feedback on how well the image is corrected or using knowledge from the original scene.
In order to solve the same problem using OpenCV, you would have to obtain the camera's intrinsic parameters and lens distortion coefficients. See, for example, Chapter 11 of Learning OpenCV (don't forget to check the correction). Then you can use a program such as this one (written with the Python bindings for OpenCV) in order to reverse lens distortion:
#!/usr/bin/python
# ./undistort 0_0000.jpg 1367.451167 1367.451167 0 0 -0.246065 0.193617 -0.002004 -0.002056
import sys
import cv
def main(argv):
if len(argv) < 10:
print 'Usage: %s input-file fx fy cx cy k1 k2 p1 p2 output-file' % argv[0]
sys.exit(-1)
src = argv[1]
fx, fy, cx, cy, k1, k2, p1, p2, output = argv[2:]
intrinsics = cv.CreateMat(3, 3, cv.CV_64FC1)
cv.Zero(intrinsics)
intrinsics[0, 0] = float(fx)
intrinsics[1, 1] = float(fy)
intrinsics[2, 2] = 1.0
intrinsics[0, 2] = float(cx)
intrinsics[1, 2] = float(cy)
dist_coeffs = cv.CreateMat(1, 4, cv.CV_64FC1)
cv.Zero(dist_coeffs)
dist_coeffs[0, 0] = float(k1)
dist_coeffs[0, 1] = float(k2)
dist_coeffs[0, 2] = float(p1)
dist_coeffs[0, 3] = float(p2)
src = cv.LoadImage(src)
dst = cv.CreateImage(cv.GetSize(src), src.depth, src.nChannels)
mapx = cv.CreateImage(cv.GetSize(src), cv.IPL_DEPTH_32F, 1)
mapy = cv.CreateImage(cv.GetSize(src), cv.IPL_DEPTH_32F, 1)
cv.InitUndistortMap(intrinsics, dist_coeffs, mapx, mapy)
cv.Remap(src, dst, mapx, mapy, cv.CV_INTER_LINEAR + cv.CV_WARP_FILL_OUTLIERS, cv.ScalarAll(0))
# cv.Undistort2(src, dst, intrinsics, dist_coeffs)
cv.SaveImage(output, dst)
if __name__ == '__main__':
main(sys.argv)
Also note that OpenCV uses a very different lens distortion model to the one in the web page you linked to.
(Original poster, providing an alternative)
The following function maps destination (rectilinear) coordinates to source (fisheye-distorted) coordinates. (I'd appreciate help in reversing it)
I got to this point through trial-and-error: I don't fundamentally grasp why this code is working, explanations and improved accuracy appreciated!
def dist(x,y):
return sqrt(x*x+y*y)
def correct_fisheye(src_size,dest_size,dx,dy,factor):
""" returns a tuple of source coordinates (sx,sy)
(note: values can be out of range)"""
# convert dx,dy to relative coordinates
rx, ry = dx-(dest_size[0]/2), dy-(dest_size[1]/2)
# calc theta
r = dist(rx,ry)/(dist(src_size[0],src_size[1])/factor)
if 0==r:
theta = 1.0
else:
theta = atan(r)/r
# back to absolute coordinates
sx, sy = (src_size[0]/2)+theta*rx, (src_size[1]/2)+theta*ry
# done
return (int(round(sx)),int(round(sy)))
When used with a factor of 3.0, it successfully undistorts the images used as examples (I made no attempt at quality interpolation):
Dead link
(And this is from the blog post, for comparison:)
If you think your formulas are exact, you can comput an exact formula with trig, like so:
Rin = 2 f sin(w/2) -> sin(w/2)= Rin/2f
Rout= f tan(w) -> tan(w)= Rout/f
(Rin/2f)^2 = [sin(w/2)]^2 = (1 - cos(w))/2 -> cos(w) = 1 - 2(Rin/2f)^2
(Rout/f)^2 = [tan(w)]^2 = 1/[cos(w)]^2 - 1
-> (Rout/f)^2 = 1/(1-2[Rin/2f]^2)^2 - 1
However, as #jmbr says, the actual camera distortion will depend on the lens and the zoom. Rather than rely on a fixed formula, you might want to try a polynomial expansion:
Rout = Rin*(1 + A*Rin^2 + B*Rin^4 + ...)
By tweaking first A, then higher-order coefficients, you can compute any reasonable local function (the form of the expansion takes advantage of the symmetry of the problem). In particular, it should be possible to compute initial coefficients to approximate the theoretical function above.
Also, for good results, you will need to use an interpolation filter to generate your corrected image. As long as the distortion is not too great, you can use the kind of filter you would use to rescale the image linearly without much problem.
Edit: as per your request, the equivalent scaling factor for the above formula:
(Rout/f)^2 = 1/(1-2[Rin/2f]^2)^2 - 1
-> Rout/f = [Rin/f] * sqrt(1-[Rin/f]^2/4)/(1-[Rin/f]^2/2)
If you plot the above formula alongside tan(Rin/f), you can see that they are very similar in shape. Basically, distortion from the tangent becomes severe before sin(w) becomes much different from w.
The inverse formula should be something like:
Rin/f = [Rout/f] / sqrt( sqrt(([Rout/f]^2+1) * (sqrt([Rout/f]^2+1) + 1) / 2 )
I blindly implemented the formulas from here, so I cannot guarantee it would do what you need.
Use auto_zoom to get the value for the zoom parameter.
def dist(x,y):
return sqrt(x*x+y*y)
def fisheye_to_rectilinear(src_size,dest_size,sx,sy,crop_factor,zoom):
""" returns a tuple of dest coordinates (dx,dy)
(note: values can be out of range)
crop_factor is ratio of sphere diameter to diagonal of the source image"""
# convert sx,sy to relative coordinates
rx, ry = sx-(src_size[0]/2), sy-(src_size[1]/2)
r = dist(rx,ry)
# focal distance = radius of the sphere
pi = 3.1415926535
f = dist(src_size[0],src_size[1])*factor/pi
# calc theta 1) linear mapping (older Nikon)
theta = r / f
# calc theta 2) nonlinear mapping
# theta = asin ( r / ( 2 * f ) ) * 2
# calc new radius
nr = tan(theta) * zoom
# back to absolute coordinates
dx, dy = (dest_size[0]/2)+rx/r*nr, (dest_size[1]/2)+ry/r*nr
# done
return (int(round(dx)),int(round(dy)))
def fisheye_auto_zoom(src_size,dest_size,crop_factor):
""" calculate zoom such that left edge of source image matches left edge of dest image """
# Try to see what happens with zoom=1
dx, dy = fisheye_to_rectilinear(src_size, dest_size, 0, src_size[1]/2, crop_factor, 1)
# Calculate zoom so the result is what we wanted
obtained_r = dest_size[0]/2 - dx
required_r = dest_size[0]/2
zoom = required_r / obtained_r
return zoom
I took what JMBR did and basically reversed it. He took the radius of the distorted image (Rd, that is, the distance in pixels from the center of the image) and found a formula for Ru, the radius of the undistorted image.
You want to go the other way. For each pixel in the undistorted (processed image), you want to know what the corresponding pixel is in the distorted image.
In other words, given (xu, yu) --> (xd, yd). You then replace each pixel in the undistorted image with its corresponding pixel from the distorted image.
Starting where JMBR did, I do the reverse, finding Rd as a function of Ru. I get:
Rd = f * sqrt(2) * sqrt( 1 - 1/sqrt(r^2 +1))
where f is the focal length in pixels (I'll explain later), and r = Ru/f.
The focal length for my camera was 2.5 mm. The size of each pixel on my CCD was 6 um square. f was therefore 2500/6 = 417 pixels. This can be found by trial and error.
Finding Rd allows you to find the corresponding pixel in the distorted image using polar coordinates.
The angle of each pixel from the center point is the same:
theta = arctan( (yu-yc)/(xu-xc) ) where xc, yc are the center points.
Then,
xd = Rd * cos(theta) + xc
yd = Rd * sin(theta) + yc
Make sure you know which quadrant you are in.
Here is the C# code I used
public class Analyzer
{
private ArrayList mFisheyeCorrect;
private int mFELimit = 1500;
private double mScaleFESize = 0.9;
public Analyzer()
{
//A lookup table so we don't have to calculate Rdistorted over and over
//The values will be multiplied by focal length in pixels to
//get the Rdistorted
mFisheyeCorrect = new ArrayList(mFELimit);
//i corresponds to Rundist/focalLengthInPixels * 1000 (to get integers)
for (int i = 0; i < mFELimit; i++)
{
double result = Math.Sqrt(1 - 1 / Math.Sqrt(1.0 + (double)i * i / 1000000.0)) * 1.4142136;
mFisheyeCorrect.Add(result);
}
}
public Bitmap RemoveFisheye(ref Bitmap aImage, double aFocalLinPixels)
{
Bitmap correctedImage = new Bitmap(aImage.Width, aImage.Height);
//The center points of the image
double xc = aImage.Width / 2.0;
double yc = aImage.Height / 2.0;
Boolean xpos, ypos;
//Move through the pixels in the corrected image;
//set to corresponding pixels in distorted image
for (int i = 0; i < correctedImage.Width; i++)
{
for (int j = 0; j < correctedImage.Height; j++)
{
//which quadrant are we in?
xpos = i > xc;
ypos = j > yc;
//Find the distance from the center
double xdif = i-xc;
double ydif = j-yc;
//The distance squared
double Rusquare = xdif * xdif + ydif * ydif;
//the angle from the center
double theta = Math.Atan2(ydif, xdif);
//find index for lookup table
int index = (int)(Math.Sqrt(Rusquare) / aFocalLinPixels * 1000);
if (index >= mFELimit) index = mFELimit - 1;
//calculated Rdistorted
double Rd = aFocalLinPixels * (double)mFisheyeCorrect[index]
/mScaleFESize;
//calculate x and y distances
double xdelta = Math.Abs(Rd*Math.Cos(theta));
double ydelta = Math.Abs(Rd * Math.Sin(theta));
//convert to pixel coordinates
int xd = (int)(xc + (xpos ? xdelta : -xdelta));
int yd = (int)(yc + (ypos ? ydelta : -ydelta));
xd = Math.Max(0, Math.Min(xd, aImage.Width-1));
yd = Math.Max(0, Math.Min(yd, aImage.Height-1));
//set the corrected pixel value from the distorted image
correctedImage.SetPixel(i, j, aImage.GetPixel(xd, yd));
}
}
return correctedImage;
}
}
I found this pdf file and I have proved that the maths are correct (except for the line vd = *xd**fv+v0 which should say vd = **yd**+fv+v0).
http://perception.inrialpes.fr/CAVA_Dataset/Site/files/Calibration_OpenCV.pdf
It does not use all of the latest co-efficients that OpenCV has available but I am sure that it could be adapted fairly easily.
double k1 = cameraIntrinsic.distortion[0];
double k2 = cameraIntrinsic.distortion[1];
double p1 = cameraIntrinsic.distortion[2];
double p2 = cameraIntrinsic.distortion[3];
double k3 = cameraIntrinsic.distortion[4];
double fu = cameraIntrinsic.focalLength[0];
double fv = cameraIntrinsic.focalLength[1];
double u0 = cameraIntrinsic.principalPoint[0];
double v0 = cameraIntrinsic.principalPoint[1];
double u, v;
u = thisPoint->x; // the undistorted point
v = thisPoint->y;
double x = ( u - u0 )/fu;
double y = ( v - v0 )/fv;
double r2 = (x*x) + (y*y);
double r4 = r2*r2;
double cDist = 1 + (k1*r2) + (k2*r4);
double xr = x*cDist;
double yr = y*cDist;
double a1 = 2*x*y;
double a2 = r2 + (2*(x*x));
double a3 = r2 + (2*(y*y));
double dx = (a1*p1) + (a2*p2);
double dy = (a3*p1) + (a1*p2);
double xd = xr + dx;
double yd = yr + dy;
double ud = (xd*fu) + u0;
double vd = (yd*fv) + v0;
thisPoint->x = ud; // the distorted point
thisPoint->y = vd;
This can be solved as an optimization problem. Simply draw on curves in images that are supposed to be straight lines. Store the contour points for each of those curves. Now we can solve the fish eye matrix as a minimization problem. Minimize the curve in points and that will give us a fisheye matrix. It works.
It can be done manually by adjusting the fish eye matrix using trackbars! Here is a fish eye GUI code using OpenCV for manual calibration.