Average betting returns convergence - convergence

I've done some sports betting (ATP tennis) for some time but still there're no more than 200+ results yet in my statistics. My success rate is clearly less than 50 % with average win multiplier being somewhere above two. I'm eager to see where the rtp will end up to and wondering does this kind of system where the most common result is zero most probably converge to it's average return from below? My intuition tells me so but can you provide any formal proof / reasoning for that?

Related

Average result of 50 Netlogo Simulation_Agent Based Simulation

I run an infectious disease spread model similar to "VIRUS" model in the model library changing the "infectiousness".
I did 20 runs each for infectiousness values 98% , 95% , 93% and the Maximum infected count was 74.05 , 73 ,78.9 respectively. (peak was at tick 38 for all 3 infectiousness values)
[I took the average of the infected count for each tick and took the maximum of these averages as the "maximum infected".]
I was expecting the maximum infected count to decrease when the infectiousness is reduced, but it didn't. As per what I understood this happens, because I considered the average values of each simulation run. (It is like I am considering a new simulation run with average infected count for each tick ).
I want to say that, I am considering all 20 simulation runs. Is there a way to do that other than the way I used the average?
In the Models Library Virus model with default parameter settings at other values, and those high infectiousness values, what I see when I run the model is a periodic variation in the numbers three classes of person. Look at the plot in the lower left corner, and you'll see this. What is happening, I believe, is this:
When there are many healthy, non-immune people, that means that there are many people who can get infected, so the number of infected people goes up, and the number of healthy people goes down.
Soon after that, the number of sick, infectious people goes down, because they either die or become immune.
Since there are now more immune people, and fewer infectious people, the number of non-immune healthy grows; they are reproducing. (See "How it works" in the Info tab.) But now we have returned to the situation in step 1, ... so the cycle continues.
If your model is sufficiently similar to the Models Library Virus model, I'd bet that this is part of what's happening. If you don't have a plot window like the Virus model, I recommend adding it.
Also, you didn't say how many ticks you are running the model for. If you run it for a short number of ticks, you won't notice the periodic behavior, but that doesn't mean it hasn't begun.
What this all means that increasing infectiousness wouldn't necessarily increase the maximum number infected: a faster rate of infection means that the number of individuals who can infected drops faster. I'm not sure that the maximum number infected over the whole run is an interesting number, with this model and a high infectiousness value. It depends what you are trying to understand.
One of the great things about NetLogo and some other ABM systems is that you can watch the system evolve over time, using various tools such as plots, monitors, etc. as well as just looking at the agents move around or change states over time. This can help you understand what is going on in a way that a single number like an average won't. Then you can use this insight to figure out a more informative way of measuring what is happening.
Another model where you can see a similar kind of periodic pattern is Wolf-Sheep Predation. I recommend looking at that. It may be easier to understand the pattern. (If you are interested in mathematical models of this kind of phenomenon, look up Lotka-Volterra models.)
(Real virus transmission can be more complicated, because a person (or other animal) is a kind of big "island" where viruses can reproduce quickly. If they reproduce too quickly, this can kill the host, and prevent further transmission of the virus. Sometimes a virus that reproduces more slowly can harm more people, because there is time for them to infect others. This blog post by Elliott Sober gives a relatively simple mathematical introduction to some of the issues involved, but his simple mathematical models don't take into account all of the complications involved in real virus transmission.)
EDIT: You added a comment Lawan, saying that you are interested in modeling COVID-19 transmission. This paper, Variation and multilevel selection of SARS‐CoV‐2 by Blackstone, Blackstone, and Berg, suggests that some of the dynamics that I mentioned in the preceding remarks might be characteristic of COVID-19 transmission. That paper is about six months old now, and it offered some speculations based on limited information. There's probably more known now, but this might suggest avenues for further investigation.
If you're interested, you might also consider asking general questions about virus transmission on the Biology Stackexchange site.

Negative option prices for certain input values in MATLAB?

In the course of testing an algorithm I computed option prices for random input values using the standard pricing function blsprice implemented in MATLAB's Financial Toolbox.
Surprisingly ( at least for me ) ,
the function seems to return negative option prices for certain combinations of input values.
As an example take the following:
> [Call,Put]=blsprice(67.6201,170.3190,0.0129,0.80,0.1277)
Call =-7.2942e-15
Put = 100.9502
If I change time to expiration to 0.79 or 0.81, the value becomes non-negative as I would expect.
Did anyone of you ever experience something similar and can come up with a short explanation why that happens?
I don't know which version of the Financial Toolbox you are using but for me (TB 2007b) it works fine.
When running:
[Call,Put]=blsprice(67.6201,170.3190,0.0129,0.80,0.1277)
I get the following:
Call = 9.3930e-016
Put = 100.9502
Which is indeed positive
Bit late but I have come across things like this before. The small negative value can be attributed to numerical rounding error and / or truncation error within the routine used to compute the cumulative normal distribution.
As you know computers are not perfect and small numerical error always persists in all calculations, in my view therefore the question one should must ask instead is - what is the accuracy of the input parameters being used and therefore what is the error tolerance for outputs.
The way I thought about it when I encountered it before was that, in finance, typical annual stock price return variance are of the order of 30% which means the mean returns are typically sampled with standard error of roughly 30% / sqrt(N) which is roughly of the order of +/- 1% assuming 2 years worth of data (so N = 260 x 2 = 520, any more data you have the other problem of stationarity assumption). Therefore on that basis the answer you got above could have been interpreted as zero given the error tolerance.
Also we typically work to penny / cent accuracy and again on that basis the answer you had could be interpreted as zero.
Just thought I'd give my 2c hope this is helpful in some ways if you are still checking for answers!

Newbie to Neural Networks

Just starting to play around with Neural Networks for fun after playing with some basic linear regression. I am an English teacher so don't have a math background and trying to read a book on this stuff is way over my head. I thought this would be a better avenue to get some basic questions answered (even though I suspect there is no easy answer). Just looking for some general guidance put in layman's terms. I am using a trial version of an Excel Add-In called NEURO XL. I apologize if these questions are too "elementary."
My first project is related to predicting a student's Verbal score on the SAT based on a number of test scores, GPA, practice exam scores, etc. as well as some qualitative data (gender: M=1, F=0; took SAT prep class: Y=1, N=0; plays varsity sports: Y=1, N=0).
In total, I have 21 variables that I would like to feed into the network, with the output being the actual score (200-800).
I have 9000 records of data spanning many years/students. Here are my questions:
How many records of the 9000 should I use to train the network?
1a. Should I completely randomize the selection of this training data or be more involved and make sure I include a variety of output scores and a wide range of each of the input variables?
If I split the data into an even number, say 9x1000 (or however many) and created a network for each one, then tested the results of each of these 9 on the other 8 sets to see which had the lowest MSE across the samples, would this be a valid way to "choose" the best network if I wanted to predict the scores for my incoming students (not included in this data at all)?
Since the scores on the tests that I am using as inputs vary in scale (some are on 1-100, and others 1-20 for example), should I normalize all of the inputs to their respective z-scores? When is this recommended vs not recommended?
I am predicting the actual score, but in reality, I'm NOT that concerned about the exact score but more of a range. Would my network be more accurate if I grouped the output scores into buckets and then tried to predict this number instead of the actual score?
E.g.
750-800 = 10
700-740 = 9
etc.
Is there any benefit to doing this or should I just go ahead and try to predict the exact score?
What if ALL I cared about was whether or not the score was above or below 600. Would I then just make the output 0(below 600) or 1(above 600)?
5a. I read somewhere that it's not good to use 0 and 1, but instead 0.1 and 0.9 - why is that?
5b. What about -1(below 600), 0(exactly 600), 1(above 600), would this work?
5c. Would the network always output -1, 0, 1 - or would it output fractions that I would then have to roundup or rounddown to finalize the prediction?
Once I have found the "best" network from Question #3, would I then play around with the different parameters (number of epochs, number of neurons in hidden layer, momentum, learning rate, etc.) to optimize this further?
6a. What about the Activation Function? Will Log-sigmoid do the trick or should I try the other options my software has as well (threshold, hyperbolic tangent, zero-based log-sigmoid).
6b. What is the difference between log-sigmoid and zero-based log-sigmoid?
Thanks!
First a little bit of meta content about the question itself (and not about the answers to your questions).
I have to laugh a little that you say 'I apologize if these questions are too "elementary."' and then proceed to ask the single most thorough and well thought out question I've seen as someone's first post on SO.
I wouldn't be too worried that you'll have people looking down their noses at you for asking this stuff.
This is a pretty big question in terms of the depth and range of knowledge required, especially the statistical knowledge needed and familiarity with Neural Networks.
You may want to try breaking this up into several questions distributed across the different StackExchange sites.
Off the top of my head, some of it definitely belongs on the statistics StackExchange, Cross Validated: https://stats.stackexchange.com/
You might also want to try out https://datascience.stackexchange.com/ , a beta site specifically targeting machine learning and related areas.
That said, there is some of this that I think I can help to answer.
Anything I haven't answered is something I don't feel qualified to help you with.
Question 1
How many records of the 9000 should I use to train the network? 1a. Should I completely randomize the selection of this training data or be more involved and make sure I include a variety of output scores and a wide range of each of the input variables?
Randomizing the selection of training data is probably not a good idea.
Keep in mind that truly random data includes clusters.
A random selection of students could happen to consist solely of those who scored above a 30 on the ACT exams, which could potentially result in a bias in your result.
Likewise, if you only select students whose SAT scores were below 700, the classifier you build won't have any capacity to distinguish between a student expected to score 720 and a student expected to score 780 -- they'll look the same to the classifier because it was trained without the relevant information.
You want to ensure a representative sample of your different inputs and your different outputs.
Because you're dealing with input variables that may be correlated, you shouldn't try to do anything too complex in selecting this data, or you could mistakenly introduce another bias in your inputs.
Namely, you don't want to select a training data set that consists largely of outliers.
I would recommend trying to ensure that your inputs cover all possible values for all of the variables you are observing, and all possible results for the output (the SAT scores), without constraining how these requirements are satisfied.
I'm sure there are algorithms out there designed to do exactly this, but I don't know them myself -- possibly a good question in and of itself for Cross Validated.
Question 3
Since the scores on the tests that I am using as inputs vary in scale (some are on 1-100, and others 1-20 for example), should I normalize all of the inputs to their respective z-scores? When is this recommended vs not recommended?
My understanding is that this is not recommended as the input to a Nerual Network, but I may be wrong.
The convergence of the network should handle this for you.
Every node in the network will assign a weight to its inputs, multiply them by their weights, and sum those products as a core part of its computation.
That means that every node in the network is searching for some coefficients for each of their inputs.
To do this, all inputs will be converted to numeric values -- so conditions like gender will be translated into "0=MALE,1=FEMALE" or something similar.
For example, a node's metric might look like this at a given point in time:
2*ACT_SCORE + 0*GENDER + (-5)*VARISTY_SPORTS ...
The coefficients for each values are exactly what the network is searching for as it converges.
If you change the scale of a value, like ACT_SCORE, you just change the scale of the coefficient that will be found by the reciporical of that scaling factor.
The result should still be the same.
There are other concerns in terms of accuracy (computers have limited capacity to represent small fractions) and speed that may enter this, but not being familiar with NEURO XL, I can't say whether or not they apply for this technology.
Question 4
I am predicting the actual score, but in reality, I'm NOT that concerned about the exact score but more of a range. Would my network be more accurate if I grouped the output scores into buckets and then tried to predict this number instead of the actual score?
This will reduce accuracy, although you should converge to a solution much faster with fewer possible outputs (scores).
Neural Networks actually describe very high-dimensional functions in their input variables.
If you reduce the granularity of that function's output space, you essentially state that you don't care about local minima and maxima in that function, especially around the borders between your output scores.
As a result, you are sacrificing information that may be an essential component of the "true" function that you are searching for.
I hope this has been helpful, but you really should break this question down into its many components and ask them separately on different sites -- potentially some of them do belong here on StackOverflow as well.

How can I prevent my program from getting stuck at a local maximum (Feed forward artificial neural network and genetic algorithm)

I'm working on a feed forward artificial neural network (ffann) that will take input in form of a simple calculation and return the result (acting as a pocket calculator). The outcome wont be exact.
The artificial network is trained using genetic algorithm on the weights.
Currently my program gets stuck at a local maximum at:
5-6% correct answers, with 1% error margin
30 % correct answers, with 10% error margin
40 % correct answers, with 20% error margin
45 % correct answers, with 30% error margin
60 % correct answers, with 40% error margin
I currently use two different genetic algorithms:
The first is a basic selection, picking two random from my population, naming the one with best fitness the winner, and the other the loser. The loser receives one of the weights from the winner.
The second is mutation, where the loser from the selection receives a slight modification based on the amount of resulting errors. (the fitness is decided by correct answers and incorrect answers).
So if the network outputs a lot of errors, it will receive a big modification, where as if it has many correct answers, we are close to a acceptable goal and the modification will be smaller.
So to the question: What are ways I can prevent my ffann from getting stuck at local maxima?
Should I modify my current genetic algorithm to something more advanced with more variables?
Should I create additional mutation or crossover?
Or Should I maybe try and modify my mutation variables to something bigger/smaller?
This is a big topic so if I missed any information that could be needed, please leave a comment
Edit:
Tweaking the numbers of the mutation to a more suited value has gotten be a better answer rate but far from approved:
10% correct answers, with 1% error margin
33 % correct answers, with 10% error margin
43 % correct answers, with 20% error margin
65 % correct answers, with 30% error margin
73 % correct answers, with 40% error margin
The network is currently a very simple 3 layered structure with 3 inputs, 2 neurons in the only hidden layer, and a single neuron in the output layer.
The activation function used is Tanh, placing values in between -1 and 1.
The selection type crossover is very simple working like the following:
[a1, b1, c1, d1] // Selected as winner due to most correct answers
[a2, b2, c2, d2] // Loser
The loser will end up receiving one of the values from the winner, moving the value straight down since I believe the position in the array (of weights) matters to how it performs.
The mutation is very simple, adding a very small value (currently somewhere between about 0.01 and 0.001) to a random weight in the losers array of weights, with a 50/50 chance of being a negative value.
Here are a few examples of training data:
1, 8, -7 // the -7 represents + (1+8)
3, 7, -3 // -3 represents - (3-7)
7, 7, 3 // 3 represents * (7*7)
3, 8, 7 // 7 represents / (3/8)
Use a niching techniche in the GA. A useful alternative is niching. The score of every solution (some form of quadratic error, I think) is changed in taking account similarity of the entire population. This maintains diversity inside the population and avoid premature convergence an traps into local optimum.
Take a look here:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.100.7342
A common problem when using GAs to train ANNs is that the population becomes highly correlated
as training progresses.
You could try increasing mutation chance and/or effect as the error-change decreases.
In English. The population becomes genetically similar due to crossover and fitness selection as a local minim is approached. You can introduce variation by increasing the chance of mutation.
You can do a simple modification to the selection scheme: the population can be viewed as having a 1-dimensional spatial structure - a circle (consider the first and last locations to be adjacent).
The production of an individual for location i is permitted to involve only parents from i's local neighborhood, where the neighborhood is defined as all individuals within distance R of i. Aside from this restriction no changes are made to the genetic system.
It's only one or a few lines of code and it can help to avoid premature convergence.
References:
TRIVIAL GEOGRAPHY IN GENETIC PROGRAMMING (2005) - Lee Spector, Jon Klein

Virtual Memory Page Replacement Algorithms

I have a project where I am asked to develop an application to simulate how different page replacement algorithms perform (with varying working set size and stability period). My results:
Vertical axis: page faults
Horizontal axis: working set size
Depth axis: stable period
Are my results reasonable? I expected LRU to have better results than FIFO. Here, they are approximately the same.
For random, stability period and working set size doesnt seem to affect the performance at all? I expected similar graphs as FIFO & LRU just worst performance? If the reference string is highly stable (little branches) and have a small working set size, it should still have less page faults that an application with many branches and big working set size?
More Info
My Python Code | The Project Question
Length of reference string (RS): 200,000
Size of virtual memory (P): 1000
Size of main memory (F): 100
number of time page referenced (m): 100
Size of working set (e): 2 - 100
Stability (t): 0 - 1
Working set size (e) & stable period (t) affects how reference string are generated.
|-----------|--------|------------------------------------|
0 p p+e P-1
So assume the above the the virtual memory of size P. To generate reference strings, the following algorithm is used:
Repeat until reference string generated
pick m numbers in [p, p+e]. m simulates or refers to number of times page is referenced
pick random number, 0 <= r < 1
if r < t
generate new p
else (++p)%P
UPDATE (In response to #MrGomez's answer)
However, recall how you seeded your input data: using random.random,
thus giving you a uniform distribution of data with your controllable
level of entropy. Because of this, all values are equally likely to
occur, and because you've constructed this in floating point space,
recurrences are highly improbable.
I am using random, but it is not totally random either, references are generated with some locality though the use of working set size and number page referenced parameters?
I tried increasing the numPageReferenced relative with numFrames in hope that it will reference a page currently in memory more, thus showing the performance benefit of LRU over FIFO, but that didn't give me a clear result tho. Just FYI, I tried the same app with the following parameters (Pages/Frames ratio is still kept the same, I reduced the size of data to make things faster).
--numReferences 1000 --numPages 100 --numFrames 10 --numPageReferenced 20
The result is
Still not such a big difference. Am I right to say if I increase numPageReferenced relative to numFrames, LRU should have a better performance as it is referencing pages in memory more? Or perhaps I am mis-understanding something?
For random, I am thinking along the lines of:
Suppose theres high stability and small working set. It means that the pages referenced are very likely to be in memory. So the need for the page replacement algorithm to run is lower?
Hmm maybe I got to think about this more :)
UPDATE: Trashing less obvious on lower stablity
Here, I am trying to show the trashing as working set size exceeds the number of frames (100) in memory. However, notice thrashing appears less obvious with lower stability (high t), why might that be? Is the explanation that as stability becomes low, page faults approaches maximum thus it does not matter as much what the working set size is?
These results are reasonable given your current implementation. The rationale behind that, however, bears some discussion.
When considering algorithms in general, it's most important to consider the properties of the algorithms currently under inspection. Specifically, note their corner cases and best and worst case conditions. You're probably already familiar with this terse method of evaluation, so this is mostly for the benefit of those reading here whom may not have an algorithmic background.
Let's break your question down by algorithm and explore their component properties in context:
FIFO shows an increase in page faults as the size of your working set (length axis) increases.
This is correct behavior, consistent with Bélády's anomaly for FIFO replacement. As the size of your working page set increases, the number of page faults should also increase.
FIFO shows an increase in page faults as system stability (1 - depth axis) decreases.
Noting your algorithm for seeding stability (if random.random() < stability), your results become less stable as stability (S) approaches 1. As you sharply increase the entropy in your data, the number of page faults, too, sharply increases and propagates the Bélády's anomaly.
So far, so good.
LRU shows consistency with FIFO. Why?
Note your seeding algorithm. Standard LRU is most optimal when you have paging requests that are structured to smaller operational frames. For ordered, predictable lookups, it improves upon FIFO by aging off results that no longer exist in the current execution frame, which is a very useful property for staged execution and encapsulated, modal operation. Again, so far, so good.
However, recall how you seeded your input data: using random.random, thus giving you a uniform distribution of data with your controllable level of entropy. Because of this, all values are equally likely to occur, and because you've constructed this in floating point space, recurrences are highly improbable.
As a result, your LRU is perceiving each element to occur a small number of times, then to be completely discarded when the next value was calculated. It thus correctly pages each value as it falls out of the window, giving you performance exactly comparable to FIFO. If your system properly accounted for recurrence or a compressed character space, you would see markedly different results.
For random, stability period and working set size doesn't seem to affect the performance at all. Why are we seeing this scribble all over the graph instead of giving us a relatively smooth manifold?
In the case of a random paging scheme, you age off each entry stochastically. Purportedly, this should give us some form of a manifold bound to the entropy and size of our working set... right?
Or should it? For each set of entries, you randomly assign a subset to page out as a function of time. This should give relatively even paging performance, regardless of stability and regardless of your working set, as long as your access profile is again uniformly random.
So, based on the conditions you are checking, this is entirely correct behavior consistent with what we'd expect. You get an even paging performance that doesn't degrade with other factors (but, conversely, isn't improved by them) that's suitable for high load, efficient operation. Not bad, just not what you might intuitively expect.
So, in a nutshell, that's the breakdown as your project is currently implemented.
As an exercise in further exploring the properties of these algorithms in the context of different dispositions and distributions of input data, I highly recommend digging into scipy.stats to see what, for example, a Gaussian or logistic distribution might do to each graph. Then, I would come back to the documented expectations of each algorithm and draft cases where each is uniquely most and least appropriate.
All in all, I think your teacher will be proud. :)