using load function with variables in MATLAB - matlab

filterSize
sz = sprintf( '%dx%d', filterSize, filterSize );
I have some .mat files named
results_3x3.mat
results_5x5.mat
and so on..
I am importing that files with load function. But since that I have 20 files I need to do it in a for loop. filterSize=3:2:41
I need to use the load function in MATLAB with variables.
I am now doing it manually as follows:
F1_score_3 = load('results_3x3.mat');
accuracy_3 = F1_score_3.accuracy;
F1_score_5 = load('results_5x5.mat');
accuracy_5 = F1_score_5.accuracy;
F1_score_7 = load('results_7x7.mat');
accuracy_7 = F1_score_7.accuracy;
F1_score_3 = load('results_&s.mat',sz); doesn't work.
Can you help me with this? Also, can I define variables with another variable in them? Such as
F1_score_%d, filterSize

Do not create dynamic variable names that contain numbers like this. They will be hard to work with downstream in your code. It would be better to store the results in an array or cell or struct. E.g., you could do something like this using a cell array:
F1_score = cell(41,1);
for filterSize=3:2:41
fname = sprintf( 'results_%dx%d.mat', filterSize, filterSize );
F1_score{filterSize} = load(fname);
end
Then when you want to get at accuracy, you can use indexing as usual. E.g.,
F1_score{3}.accuracy

Related

variable in reading data structure in MATLAB

I would like to read a particular variable AandB_cossy from N Matlab files. To do this I have used as below. To read the values, we generally use Noplate1.AandB_cossy(:,1). This works fine. My doubt is once I assign to Noplate1, Noplate2, Noplate3, how do I read without specifying the AandB_cossy again to read the values for each one? Is it possible to do something like Noplate1.var(:,1)?? Any help is highly appreciated. Thanks a lot.
clearvars; close all; clc;
var='AandB_cossy';
Noplate1=load('dummy1.mat',var);
Noplate2=load('dumsabs2.mat',var);
Noplate3=load('yipposbn123.mat',var);
You can use var to index into the struct Noplate1 as follows:
var = 'AandB_cossy';
Noplate1 = load('dummy1.mat',var);
Noplate1.(var)(:,1);
To read many files, the easiest is to list their names in a list (you can use the function dir to generate this list if it is all files in a directory, for example). Then you iterate over the list and read the values into a cell array:
fnames = {'dummy1.mat','dumsabs2.mat','yipposbn123.mat'};
var = 'AandB_cossy';
Noplate = cell(size(fnames));
for ii = 1:numel(fnames)
tmp = load(fnames{ii},var);
Noplate{ii} = tmp.(var);
end
Now you can access each data array as Noplate{1}, Noplate{2}, etc.

MATLAB: Loop through the values of a list from 'who' function

I have a long list of variables in my workspace.
First, I'm finding the potential variables I could be interested in using the who function. Next, I'd like to loop through this list to find the size of each variable, however who outputs only the name of the variables as a string.
How could I use this list to refer to the values of the variables, rather than just the name?
Thank you,
list = who('*time*')
list =
'time'
'time_1'
'time_2'
for i = 1:size(list,1);
len(i,1) = length(list(i))
end
len =
1
1
1
If you want details about the variables, you can use whos instead which will return a struct that contains (among other things) the dimensions (size) and storage size (bytes).
As far as getting the value, you could use eval but this is not recommended and you should instead consider using cell arrays or structs with dynamic field names rather than dynamic variable names.
S = whos('*time*');
for k = 1:numel(S)
disp(S(k).name)
disp(S(k).bytes)
disp(S(k).size)
% The number of elements
len(k) = prod(S(k).size);
% You CAN get the value this way (not recommended)
value = eval(S(k).name);
end
#Suever nicely explained the straightforward way to get this information. As I noted in a comment, I suggest that you take a step back, and don't generate those dynamically named variables to begin with.
You can access structs dynamically, without having to resort to the slow and unsafe eval:
timestruc.field = time;
timestruc.('field1') = time_1;
fname = 'field2';
timestruc.(fname) = time_2;
The above three assignments are all valid for a struct, and so you can address the fields of a single data struct by generating the field strings dynamically. The only constraint is that field names have to be valid variable names, so the first character of the field has to be a letter.
But here's a quick way out of the trap you got yourself into: save your workspace (well, the relevant part) in a .mat file, and read it back in. You can do this in a way that will give you a struct with fields that are exactly your variable names:
time = 1;
time_1 = 2;
time_2 = rand(4);
save('tmp.mat','time*'); % or just save('tmp.mat')
S = load('tmp.mat');
afterwards S will be a struct, each field will correspond to a variable you saved into 'tmp.mat':
>> S
S =
time: 1
time_1: 2
time_2: [4x4 double]
An example writing variables from workspace to csv files:
clear;
% Writing variables of myfile.mat to csv files
load('myfile.mat');
allvars = who;
for i=1:length(allvars)
varname = strjoin(allvars(i));
evalstr = strcat('csvwrite(', char(39), varname, '.csv', char(39), ', ', varname, ')');
eval(evalstr);
end

Outputting data from for loop to .mat file using numbers in title MATLAB

I need to output .mat files for the below data. I need one file to have cell (1,1) to be Mean_RPM_list1, cell (2,1) to be Mean_RPM_list2 etc. And then I need another file to have cell(1,1) to be Mean_Torque_list1 to have cell(1,1).....and so on.
Can anybody shed any light on this for me?
Also if someone knows how to automate me calling the matrices A and B so I could have A = [Mean_rpm1:Mean_rpmMAX], that would also be very helpful.
TIA for any help.
A = [Mean_rpm1 Mean_rpm2 Mean_rpm3 Mean_rpm4 Mean_rpm5 Mean_rpm6 Mean_rpm7 Mean_rpm8 Mean_rpm9 Mean_rpm10 Mean_rpm11 Mean_rpm12];
B = [Mean_torque1 Mean_torque2 Mean_torque3 Mean_torque4 Mean_torque5 Mean_torque6 Mean_torque7 Mean_torque8 Mean_torque9 Mean_torque10 Mean_torque11 Mean_torque12];
plot(A,B,'*')
for i = 1:num_bins;
bin = first + ((i-1)/10);
eval(sprintf('Mean_RPM_list%0.f = A;',bin*10));
eval(sprintf('Mean_Torque_list%0.f = B;',bin*10));
end
First of all this is really bad idea to create a set of variables with names different by numbers. As you can see it's very difficult to deal with such variables, you always have to use eval (or other related) statements.
It's much easier to create a cell array Mean_rpm and access its elements as Mean_rpm{1}, etc.
If the vectors are numeric and have the same size you can also make a 2D/3D array. Then access as Mean_rpm(:,:,1) etc.
Next, to store a cell array to a mat-file you have to create this array in MATLAB. No options (at least for now) to do it by parts in a loop. (But you can do it for numeric vectors and matrices using matfile object.) So why do you need this intermediate Mean_RPM_list variable? Just do Mean_RPM_list{bin*10} = A in your loop.
For your first question, if you already have those variables you have to use eval in a loop. Something like
A = [];
for k=1:K
eval(sprintf('A{k} = [A, Mean_rpm%d];',k));
end
You can also get names for all similar variables and combine them.
varlist = who('Mean_rpm*');
A = cell(1,numel(varlist);
for k = 1:numel(varlist)
eval('A{k} = varlist{k};');
end
Here is one without loop using CELL2FUN:
A=cellfun(#(x)evalin('base',x),varlist,'UniformOutput',0);
You should avoid having all these individual variables around in the first place. Data types like arrays, cell arrays and structure arrays exist to help you with this. If you want each variable to be associated with a name, you can use a structure array. I've made an example below. Instead of assigning a value to Mean_rpm1 like you are doing now, assign it to meanStruct.Mean_rpm1 then save the entire structure.
% as you generate values for each variable, assign them to the
% appropriate field.
meanStruct.Mean_rpm1 = [10:10];
meanStruct.Mean_rpm2 = [12:15];
meanStruct.Mean_rpm3 = [13:20];
meanStruct.Mean_rpm4 = [14];
meanStruct.Mean_rpm5 = [15:18];
meanStruct.Mean_rpm6 = [16:20];
meanStruct.Mean_rpm7 = [17:22];
meanStruct.Mean_rpm8 = [18:22];
meanStruct.Mean_rpm9 = [19:22];
meanStruct.Mean_rpm10 = [20:22];
meanStruct.Mean_rpm11 = [21:22];
meanStruct.Mean_rpm12 = [22:23];
% save the structure array
save('meanValues.mat','meanStruct')
% load and access the structure array
clear all
load('meanValues.mat')
temp = meanStruct.Mean_rpm3

MATLAB Changing the name of a matrix with each iteration

I was just wondering if there is a clean way to store a matrix after each iteration with a different name? I would like to be able to store each matrix (uMatrix) under a different name depending on which simulation I am on eg Sim1, Sim2, .... etc. SO that Sim1 = uMatrix after first run through, then Sim2 = uMatrix after 2nd run through. SO that each time I can store a different uMatrix for each different Simulation.
Any help would be much appreciated, and sorry if this turns out to be a silly question. Also any pointers on whether this code can be cleaned up would be great too
Code I am using below
d = 2;
kij = [1,1];
uMatrix = [];
RLABEL=[];
SimNum = 2;
for i =1:SimNum
Sim = ['Sim',num2str(i)] %Simulation number
for j=1:d
RLABEL = [RLABEL 'Row','',num2str(j) ' '];
Px = rand;
var = (5/12)*d*sum(kij);
invLam = sqrt(var);
u(j) = ((log(1-Px))*-invLam)+kij(1,j);
uMatrix(j,1) = j;
uMatrix(j,2) = u(j);
uMatrix(j,3) = kij(1,j);
uMatrix(j,4) = Px;
uMatrix(j,5) = invLam;
uMatrix(j,6) = var;
end
printmat(uMatrix,'Results',RLABEL,'SECTION u kij P(Tij<u) 1/Lambda Var')
end
There are really too many options. To go describe both putting data into, and getting data our of a few of these methods:
Encode in variable names
I really, really dislike this approach, but it seems to be what you are specifically asking for. To save uMatrix as a variable Sim5 (after the 5th run), add the following to your code at the end of the loop:
eval([Sim ' = uMatrix;']); %Where the variable "Sim" contains a string like 'Sim5'
To access the data
listOfStoredDataNames = who('Sim*')
someStoredDataItem = eval(listOfStoredDataNames {1}) %Ugghh
%or of you know the name already
someStoredDataItem = Sim1;
Now, please don't do this. Let me try and convince you that there are better ways.
Use a structure
To do the same thing, using a structure called (for example) simResults
simResults.(Sim) = uMatrix;
or even better
simResults.(genvarname(Sim)) = uMatrix;
To access the data
listOfStoredDataNames = fieldnames(simResults)
someStoredDataItem = simResults.(listOfStoredDataNames{1})
%or of you know the name already
someStoredDataItem = simResults.Sim1
This avoids the always problematic eval statement, and more importantly makes additional code much easier to write. For example you can easily pass all simResults into a function for further processing.
Use a Map
To use a map to do the same storage, first initialize the map
simResults = containers.Map('keyType','char','valueType','any');
Then at each iteration add the values to the map
simResults(Sim) = uMatrix;
To access the data
listOfStoredDataNames = simResults.keys
someStoredDataItem = simResults(listOfStoredDataNames{1})
%or of you know the name already
someStoredDataItem = simResults('Sim1')
Maps are a little more flexible in the strings which can be used for names, and are probably a better solution if you are comfortable.
Use a cell array
For simple, no nonsense storage of the results
simResults{i} = uMatrix;
To access the data
listOfStoredDataNames = {}; %Names are Not available using this method
someStoredDataItem = simResults{1}
Or, using a slight level of nonesense
simResults{i,1} = Sim; %Store the name in column 1
simResults{i,2} = uMatrix; %Store the result in column 2
To access the data
listOfStoredDataNames = simResults(:,1)
someStoredDataItem = simResults{1,2}
Just to add to the detailed answer given by #Pursuit, there is one further method I am fond of:
Use an array of structures
Each item in the array is a structure which stores the results and any additional information:
simResults(i).name = Sim; % store the name of the run
simResults(i).uMatrix = uMatrix; % store the results
simResults(i).time = toc; % store the time taken to do this run
etc. Each element in the array will need to have the same fields. You can use quick operations to extract all the elements from the array, for example to see the timings of each run at a glance you can do:
[simResults.time]
You can also use arrayfun to to a process on each element in the array:
anon_evaluation_func = #(x)( evaluate_uMatrix( x.uMatrix ) );
results = arrayfun( anon_evaluation_func, simResults );
or in a more simple syntax,
for i = 1:length(simResults)
simResults(i).result = evaluate_uMatrix( simResults(i).uMatrix );
end
I would try to use a map which stores a <name, matrix>.
the possible way to do it would be to use http://www.mathworks.com/help/matlab/map-containers.html

Load Multiple .mat Files to Matlab workspace

I'm trying to load several .mat files to the workspace. However, they seem to overwrite each other. Instead, I want them to append. I am aware that I can do something like:
S=load(file1)
R=load(file2)
etc.
and then append the variables manually.
But there's a ton of variables, and making an append statement for each one is extremely undesirable (though possible as a last resort). Is there some way for me to load .mat files to the workspace (by using the load() command without assignment) and have them append?
Its not entirely clear what you mean by "append" but here's a way to get the data loaded into a format that should be easy to deal with:
file_list = {'file1';'file2';...};
for file = file_list'
loaded.(char(file)) = load(file);
end
This makes use of dynamic field references to load the contents of each file in the list into its own field of the loaded structure. You can iterate over the fields and manipulate the data however you'd like from here.
It sounds like you have a situation in which each file contains a matrix variable A and you want to load into memory the concatenation of all these matrices along some dimension. I had a similar need, and wrote the following function to handle it.
function var = loadCat( dim, files, varname )
%LOADCAT Concatenate variables of same name appearing in multiple MAT files
%
% where dim is dimension to concatenate along,
% files is a cell array of file names, and
% varname is a string containing the name of the desired variable
if( isempty( files ) )
var = [];
return;
end
var = load( files{1}, varname );
var = var.(varname);
for f = 2:numel(files),
newvar = load( files{f}, varname );
if( isfield( newvar, varname ) )
var = cat( dim, var, newvar.(varname) );
else
warning( 'loadCat:missingvar', [ 'File ' files{f} ' does not contain variable ' varname ] );
end
end
end
Clark's answer and function actually solved my situation perfectly... I just added the following bit of code to make it a little less tedious. Just add this to the beginning and get rid of the "files" argument:
[files,pathname] = uigetfile('*.mat', 'Select MAT files (use CTRL/COMM or SHIFT)', ...
'MultiSelect', 'on');
Alternatively, it could be even more efficient to just start with this bit:
[pathname] = uigetdir('C:\');
files = dir( fullfile(pathname,'*.mat') ); %# list all *.mat files
files = {files.name}'; %# file names
data = cell(numel(files),1); %# store file contents
for i=1:numel(files)
fname = fullfile(pathname,files{i}); %# full path to file
data{i} = load(fname); %# load file
end
(modified from process a list of files with a specific extension name in matlab).
Thanks,
Jason