Run cronjobs in a sequential manner using kubernetes scheduler - kubernetes

I am new to kubernetes. I want to run a cronjob using kubernetes scheduler that does the following tasks in a sequence:
Ingest data from datawarehouse into a mysql RDMS
Process the data
Indexing of the data using elastic search
Step 2 should occur after the completion of step 1 and step 3 should occur after the completion of step 2. May I know how can I achieve this without using argo or Brigade and simply with kubernetes cronjobs (The idea is to make the ingestion-processing-indexing workflow simple)? And if there's a sample code available for it?

Related

Quarkus scheduler in multiple pods (other than concurrentExecution = SKIP)

In Quarkus framework how to schedule a job to execute only in one pod rather running in all pods. I tried (concurrentExecution = SKIP) that didn't help.
Run the job only in one pod on multi instant application.
From Quarkus guide: https://quarkus.io/guides/scheduler-reference#concurrent_execution
Note that only executions within the same application instance are
considered. This feature is not intended to work across the cluster
so I suppose you have to move to Quartz to get cluster support out-of-the-box or create your custom synchronization method (eg. using a database or file,etc).

Kubernetes cluster running Cronjob triggering only one pod

I was trying to find a solution how to run a job handled by 2 pods in a cluster.
The job is ran by the cronjob scheduler, to run every (say) 15 mins. This job is to fetch records from the db table and process it. There is only READ permission provided to access the table records. I am trying to see, is there any way to configure in k8s, that only one pod run the job.
This way I want to prevent the duplicate processing.
The alternate is have a temporary lock file in the persistent storage and the application in the pod puts a lock to it and releases after processing.
If there is any out of box solution available with in k8s, please let me know.
This is implemented using a traditional resource lock mechanism. A lock file is created during the process and the pods do no run if there is any lock file exists.
This way only one pods will run the job any point of time.

Best practice when deplyoying a Flink Job Cluster on Kubernetes regarding savepointing and updating the job

I am looking into a deploying a Flink job on Kubernetes. When looking through the documentations I'm having a hard time coming up with what the best practices are regarding how to deploy the job specifically when the job has to maintain state.
There are two main points regarding this job:
It is a streaming job dealing with unbounded data (never ending stream)
Keeps and uses state that needs to be maintained over different job versions
Currently, we are running on Hadoop. There it is quite easy when you want to deploy a new version of the job and keep state. The steps are: cancel the job with savepoint, then deploy a new job and point to that savepoint.
Kubernetes:
Based on the definitions, it seems that for our use case a Job Cluster is the best fit for the requirements. There will only be one job running on this cluster.
The issue with the Kubernetes setup is that the savepoint location needs to be added as an argument to the Deployment. In the case that a pod is taken offline, it will restart the application with the original savepoint in the Deployment. Specifically this will reset the Kafka offset to whenever the job was deployed and reprocess a lot of data.
In addition to that, how would i go about canceling a job with savepoint when running on a Job cluster from something like ci/cd? Would i need to create another deployer pod and use the rest api?
What is the best practice regarding deploying a stateful Flink job on kubernetes and upgrading it without losing the state?

Spring boot scheduler running cron job for each pod

Current Setup
We have kubernetes cluster setup with 3 kubernetes pods which run spring boot application. We run a job every 12 hrs using spring boot scheduler to get some data and cache it.(there is queue setup but I will not go on those details as my query is for the setup before we get to queue)
Problem
Because we have 3 pods and scheduler is at application level , we make 3 calls for data set and each pod gets the response and pod which processes at caches it first becomes the master and other 2 pods replicate the data from that instance.
I see this as a problem because we will increase number of jobs for get more datasets , so this will multiply the number of calls made.
I am not from Devops side and have limited azure knowledge hence I need some help from community
Need
What are the options available to improve this? I want to separate out Cron schedule to run only once and not for each pod
1 - Can I keep cronjob at cluster level , i have read about it here https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
Will this solve a problem?
2 - I googled and found other option is to run a Cronjob which will schedule a job to completion, will that help and not sure what it really means.
Thanks in Advance to taking out time to read it.
Based on my understanding of your problem, it looks like you have following two choices (at least) -
If you continue to have scheduling logic within your springboot main app, then you may want to explore something like shedlock that helps make sure your scheduled job through app code executes only once via an external lock provider like MySQL, Redis, etc. when the app code is running on multiple nodes (or kubernetes pods in your case).
If you can separate out the scheduler specific app code into its own executable process (i.e. that code can run in separate set of pods than your main application code pods), then you can levarage kubernetes cronjob to schedule kubernetes job that internally creates pods and runs your application logic. Benefit of this approach is that you can use native kubernetes cronjob parameters like concurrency and few others to ensure the job runs only once during scheduled time through single pod.
With approach (1), you get to couple your scheduler code with your main app and run them together in same pods.
With approach (2), you'd have to separate your code (that runs in scheduler) from overall application code, containerize it into its own image, and then configure kubernetes cronjob schedule with this new image referring official guide example and kubernetes cronjob best practices (authored by me but can find other examples).
Both approaches have their own merits and de-merits, so you can evaluate them to suit your needs best.

Kubernetes dynamic Job scaling

I’m finally dipping my toes in the kubernetes pool and wanted to get some advice on the best way to approach a problem I have:
Tech we are using:
GCP
GKE
GCP Pub/Sub
We need to do bursts of batch processing spread out across a fleet and have decided on the following approach:
New raw data flows in
A node analyses this and breaks the data up into manageable portions which are pushed onto a queue
We have a cluster with Autoscaling On and Min Size ‘0’
A Kubernetes job spins up a pod for each new message on this cluster
When pods can’t pull anymore messages they terminate successfully
The question is:
What is the standard approach for triggering jobs such as this?
Do you create a new job each time or are jobs meant to be long lived and re-run?
I have only seen examples of using a yaml file however we would probably want the node which did the portioning of work to create the job as it knows how many parallel pods should be run. Would it be recommended to use the python sdk to create the job spec programatically? Or if jobs are long lived would you simply hit the k8 api and modify the parallel pods required then re-run job?
Jobs in Kubernetes are meant to be short-lived and are not designed to be reused. Jobs are designed for run-once, run-to-completion workloads. Typically they are be assigned a specific task, i.e. to process a single queue item.
However, if you want to process multiple items in a work queue with a single instance then it is generally advisable to instead use a Deployment to scale a pool of workers that continue to process items in the queue, scaling the number of pool workers dependent on the number of items in the queue. If there are no work items remaining then you can scale the deployment to 0 replicas, scaling back up when there is work to be done.
To create and control your workloads in Kubernetes the best-practice would be to use the Kubernetes SDK. While you can generate YAML files and shell out to another tool like kubectl using the SDK simplifies configuration and error handling, as well as allowing for simplified introspection of resources in the cluster as well.