Spring boot scheduler running cron job for each pod - kubernetes

Current Setup
We have kubernetes cluster setup with 3 kubernetes pods which run spring boot application. We run a job every 12 hrs using spring boot scheduler to get some data and cache it.(there is queue setup but I will not go on those details as my query is for the setup before we get to queue)
Problem
Because we have 3 pods and scheduler is at application level , we make 3 calls for data set and each pod gets the response and pod which processes at caches it first becomes the master and other 2 pods replicate the data from that instance.
I see this as a problem because we will increase number of jobs for get more datasets , so this will multiply the number of calls made.
I am not from Devops side and have limited azure knowledge hence I need some help from community
Need
What are the options available to improve this? I want to separate out Cron schedule to run only once and not for each pod
1 - Can I keep cronjob at cluster level , i have read about it here https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
Will this solve a problem?
2 - I googled and found other option is to run a Cronjob which will schedule a job to completion, will that help and not sure what it really means.
Thanks in Advance to taking out time to read it.

Based on my understanding of your problem, it looks like you have following two choices (at least) -
If you continue to have scheduling logic within your springboot main app, then you may want to explore something like shedlock that helps make sure your scheduled job through app code executes only once via an external lock provider like MySQL, Redis, etc. when the app code is running on multiple nodes (or kubernetes pods in your case).
If you can separate out the scheduler specific app code into its own executable process (i.e. that code can run in separate set of pods than your main application code pods), then you can levarage kubernetes cronjob to schedule kubernetes job that internally creates pods and runs your application logic. Benefit of this approach is that you can use native kubernetes cronjob parameters like concurrency and few others to ensure the job runs only once during scheduled time through single pod.
With approach (1), you get to couple your scheduler code with your main app and run them together in same pods.
With approach (2), you'd have to separate your code (that runs in scheduler) from overall application code, containerize it into its own image, and then configure kubernetes cronjob schedule with this new image referring official guide example and kubernetes cronjob best practices (authored by me but can find other examples).
Both approaches have their own merits and de-merits, so you can evaluate them to suit your needs best.

Related

How to create a cron job in a Kubernetes deployed app without duplicates?

I am trying to find a solution to run a cron job in a Kubernetes-deployed app without unwanted duplicates. Let me describe my scenario, to give you a little bit of context.
I want to schedule jobs that execute once at a specified date. More precisely: creating such a job can happen anytime and its execution date will be known only at that time. The job that needs to be done is always the same, but it needs parametrization.
My application is running inside a Kubernetes cluster, and I cannot assume that there always will be only one instance of it running at the any moment in time. Therefore, creating the said job will lead to multiple executions of it due to the fact that all of my application instances will spawn it. However, I want to guarantee that a job runs exactly once in the whole cluster.
I tried to find solutions for this problem and came up with the following ideas.
Create a local file and check if it is already there when starting a new job. If it is there, cancel the job.
Not possible in my case, since the duplicate jobs might run on other machines!
Utilize the Kubernetes CronJob API.
I cannot use this feature because I have to create cron jobs dynamically from inside my application. I cannot change the cluster configuration from a pod running inside that cluster. Maybe there is a way, but it seems to me there have to be a better solution than giving the application access to the cluster it is running in.
Would you please be as kind as to give me any directions at which I might find a solution?
I am using a managed Kubernetes Cluster on Digital Ocean (Client Version: v1.22.4, Server Version: v1.21.5).
After thinking about a solution for a rather long time I found it.
The solution is to take the scheduling of the jobs to a central place. It is as easy as building a job web service that exposes endpoints to create jobs. An instance of a backend creating a job at this service will also provide a callback endpoint in the request which the job web service will call at the execution date and time.
The endpoint in my case links back to the calling backend server which carries the logic to be executed. It would be rather tedious to make the job service execute the logic directly since there are a lot of dependencies involved in the job. I keep a separate database in my job service just to store information about whom to call and how. Addressing the startup after crash problem becomes trivial since there is only one instance of the job web service and it can just re-create the jobs normally after retrieving them from the database in case the service crashed.
Do not forget to take care of failing jobs. If your backends are not reachable for some reason to take the callback, there must be some reconciliation mechanism in place that will prevent this failure from staying unnoticed.
A little note I want to add: In case you also want to scale the job service horizontally you run into very similar problems again. However, if you think about what is the actual work to be done in that service, you realize that it is very lightweight. I am not sure if horizontal scaling is ever a requirement, since it is only doing requests at specified times and is not executing heavy work.

Kubernetes Handling a Sudden Request of Processing Power (Such as a Python Script using 5 Processes)

I have a little scenario that I am running in my mind with the following setup:
A Django Web Server running in Kubernetes with the ability to autoscale resources (Google Kubernetes Engine), and I set the resource values to be requesting nodes with 8 Processing Units (8 Cores) and 16 GB Ram.
Because it is a web server, I have my frontend that can call a Python script that executes with 5 Processes, and here's what I am worried about:
I know that If I run this script twice on my webserver (located in the same container as my Django code), I am going to be using (to keep it simple) 10 Processes/CPUs to execute this code.
So what would happen?
Would the first Python script be ran on Pod 1 and the second Python script (since we used 5 out of the 8 processing units) trigger a Pod 2 and another Node, then run on that new replica with full access to 5 new processes?
Or, would the first Python script be ran on Replica 1, and then the second Python script be throttled to 3 processing units because, perhaps, Kubernetes is allocating based on CPU usage in the Replica, not how much processes I called the script with?
If your system has a Django application that launches scripts with subprocess or a similar mechanism, those will always be in the same container as the main server, in the same pod, on the same node. You'll never trigger any of the Kubernetes autoscaling capabilities. If the pod has resource limits set, you could get CPU utilization throttled, and if you exceed the configured memory limit, the pod could get killed off (with Django and all of its subprocesses together).
If you want to take better advantage of Kubernetes scheduling and resource management, you may need to restructure this application. Ideally you could run the Django server and each of the supporting tasks in a separate pod. You would then need a way to trigger the tasks and collect the results.
I'd generally build this by introducing a job queue system such as RabbitMQ or Celery into the mix. The Django application adds items to the queue, but doesn't directly do the work itself. Then you have a worker for each of the processes that reads the queue and does work. This is not directly tied to Kubernetes, and you could run this setup with a RabbitMQ or Redis installation and a local virtual environment.
If you deploy this setup to Kubernetes, then each of the tasks can run in its own deployment, fed by the work queue. Each task could run up to its own configured memory and CPU limits, and they could run on different nodes. With a little extra work you can connect a horizontal pod autoscaler to scale the workers based on the length of the job queue, so if you're running behind processing one of the tasks, the HPA can cause more workers to get launched, which will create more pods, which can potentially allocate more nodes.
The important detail here, though, is that a pod is the key unit of scaling; if all of your work stays within a single pod then you'll never trigger the horizontal pod autoscaler or the cluster autoscaler.

How to terminate only certain pods based on wheather or not they have finnished a certain task in kubernetes?

I'm having trouble with finding a solution that allows to terminate only certain pods in a deployment.
The application running inside the pods does some processing which can a take lot of time to be finished.
Let's say I have 10 tasks that are stored in a database and I issue a command to scale the deployment to 10 pods.
Let's say that after some time 3 of the pods have finished their tasks and are no longer required.
How can i scale down the deployment from 10 to 7 while terminate only the pods that have finished the tasks and not the pods that are still processing those tasks?
I don't know if more details are needed but i will happily edit the question if there are more details needed to give an answer for this kind of problem.
In this case Kubernetes Job might be better suited for this kind of task.

Is it possible to run a single container Flink cluster in Kubernetes with high-availability, checkpointing, and savepointing?

I am currently running a Flink session cluster (Kubernetes, 1 JobManager, 1 TaskManager, Zookeeper, S3) in which multiple jobs run.
As we are working on adding more jobs, we are looking to improve our deployment and cluster management strategies. We are considering migrating to using job clusters, however there is reservation about the number of containers which will be spawned. One container per job is not an issue, but two containers (1 JM and 1 TM) per job raises concerns about memory consumption. Several of the jobs need high-availability and the ability to use checkpoints and restore from/take savepoints as they aggregate events over a window.
From my reading of the documentation and spending time on Google, I haven't found anything that seems to state whether or not what is being considered is really possible.
Is it possible to do any of these three things:
run both the JobManager and TaskManager as separate processes in the same container and have that serve as the Flink cluster, or
run the JobManager and TaskManager as literally the same process, or
run the job as a standalone JAR with the ability to recover from/take checkpoints and the ability to take a savepoint and restore from that savepoint?
(If anyone has any better ideas, I'm all ears.)
One of the responsibilities of the job manager is to monitor the task manager(s), and initiate restarts when failures have occurred. That works nicely in containerized environments when the JM and TMs are in separate containers; otherwise it seems like you're asking for trouble. Keeping the TMs separate also makes sense if you are ever going to scale up, though that may moot in your case.
What might be workable, though, would be to run the job using a LocalExecutionEnvironment (so that everything is in one process -- this is sometimes called a Flink minicluster). This path strikes me as feasible, if you're willing to work at it, but I can't recommend it. You'll have to somehow keep track of the checkpoints, and arrange for the container to be restarted from a checkpoint when things fail. And there are other things that may not work very well -- see this question for details. The LocalExecutionEnvironment wasn't designed with production deployments in mind.
What I'd suggest you explore instead is to see how far you can go toward making the standard, separate container solution affordable. For starters, you should be able to run the JM with minimal resources, since it doesn't have much to do.
Check this operator which automates the lifecycle of deploying and managing Flink in Kubernetes. The project is in beta but you can still get some idea about how to do it or directly use this operator if it fits your requirement. Here Job Manager and Task manager is separate kubernetes deployment.

Kubernetes dynamic Job scaling

I’m finally dipping my toes in the kubernetes pool and wanted to get some advice on the best way to approach a problem I have:
Tech we are using:
GCP
GKE
GCP Pub/Sub
We need to do bursts of batch processing spread out across a fleet and have decided on the following approach:
New raw data flows in
A node analyses this and breaks the data up into manageable portions which are pushed onto a queue
We have a cluster with Autoscaling On and Min Size ‘0’
A Kubernetes job spins up a pod for each new message on this cluster
When pods can’t pull anymore messages they terminate successfully
The question is:
What is the standard approach for triggering jobs such as this?
Do you create a new job each time or are jobs meant to be long lived and re-run?
I have only seen examples of using a yaml file however we would probably want the node which did the portioning of work to create the job as it knows how many parallel pods should be run. Would it be recommended to use the python sdk to create the job spec programatically? Or if jobs are long lived would you simply hit the k8 api and modify the parallel pods required then re-run job?
Jobs in Kubernetes are meant to be short-lived and are not designed to be reused. Jobs are designed for run-once, run-to-completion workloads. Typically they are be assigned a specific task, i.e. to process a single queue item.
However, if you want to process multiple items in a work queue with a single instance then it is generally advisable to instead use a Deployment to scale a pool of workers that continue to process items in the queue, scaling the number of pool workers dependent on the number of items in the queue. If there are no work items remaining then you can scale the deployment to 0 replicas, scaling back up when there is work to be done.
To create and control your workloads in Kubernetes the best-practice would be to use the Kubernetes SDK. While you can generate YAML files and shell out to another tool like kubectl using the SDK simplifies configuration and error handling, as well as allowing for simplified introspection of resources in the cluster as well.