STM32WB : Is it possible to wakeup standby mode via BLE? - stm32

I am starting a project using STM32WB MCU. I would like to minimize the power consumption while in sleep, but able to wake it up via BLE command.
From the document AN5071(STM32WB ultra-low-power features overview) it says "Wakeup from this mode can also be performed by the Radio sub-system." But I didn't found any further description or example about the 'Radio sub-system'. Does the 'Radio sub-system' is same as BLE?

The only radio in that part is a bluetooth radio, so yes "Radio sub-system" means "BLE subsystem".
For more details you will have to read the reference manual:
RM0471 for STM32WB50CG/30CE
RM0478 for STM32WB10CC
RM0473 for STM32WB15CC

I got reply from ST employee saying it depends on the model. For STM32WB55 it's not possible to enter standby mode with RF active. Check AN5289.
But for STM32WB15 it is possible. Reference the BLE_HeartRate example in STM32CubeWB example.

Related

STM32 bootloader failure to erase

I am writing an external bootloader for the STM32F730Z8 - (why? I need one windows code that can run the bootloader for the STM32, or use the STM32 to reprog a connected ATF1508 for my client). I've done this before, using info in AN3155 and AN2606. On lesser CPUs, this has had no difficulty (i.e. STM32L4P5). In this case, I try the same:
1-cycle \RESET & BOOT0 to boot to supervisor mode
2-autobaud successfully
3-send 0x00 to get the list of commands, successfully
4-send 01 to get the version and protection, successfully (vers 49, rp and nt both 0)
5-send 02 to get chip id (0x0452), successfully
6-send 0x73 to write-unprotect flash, successfully (i.e. receive back two ACK)
7-send 0x44 to begin an extended erase (intending only to erase sector 0).
This is where it fails. I get neither ACK nor NACK - it just times out. I don't even get to the second half of the extended-erase command where I send it the sector info. (On the STM32L4P5 it succeeds here easily and goes on to finish erasing, then to write code successfully.)
I've tried very long waits & repeat loops to wait for the ACK (many minutes). From past experience this should be fast, it is only the second stage where I tell it how much flash to erase that takes any significant time.
I've inspected the protection option areas of memory, at 0x1FFF0010, 0018, and they are unprotected, as per factory defaults.
I'm communicating over an FT231XS-R, using the D2XX driver calls. I can mess with the baud rates and such, but that only prevents it from autobauding...and we're doing that fine (9600/8/1/E). I've played with the D2XX SetTimeouts - if set too hasty that only screws up earlier commands. I'm wired to a 20 MHz crystal, and the application runs at 200 MHz, but my understanding is that the bootloader just runs at the internal RC clock rate.
I'm certainly missing something stupid, but I didn't see it in the documentation. Help?
Jeff Casey / Rockfield Research Inc. / Las Vegas, NV
Fixed, disregard.
The fineprint of AN3155 clued me in. On the description of the Write Unprotect command, it says that a system reset will be performed after completion. How did I miss this on the STM32L4P5? I just didn't read it. But why did it work then? In the really fine print next page, in a footnote to the flowchart, it says that they were just foolin'....system reset is only called for some (..list omitted..) and for other STM32 products no system reset is called for.
My earlier success had the following sequence:
reboot-supervisor
autobaud
get
gvrp
gid
wpun
xerase
wpun
write
verify
reboot-user
obviously that doesn't work for the F730. what works is:
reboot-super
autobaud
get
gvrp
gid
wpun
reboot-super
autobaud
get gvrp
gid
xerase
reboot-super
autobaud
get
gvrp
gid
write
verify
reboot-user
(obviously I can skip a few of the repeated steps, like get-id, but basically it needed a reboot and re-autobaud.)
note that i had to reboot-super a 3rd time...this was because the write attempt timed out after the xerase unless i went through the whole sequence again. funny, though, the spec doesn't say anything about resetting after an erase. i cross posted this question on the STM32 community site, and I'll do the same with this answer and ping them on this.
Thanks for reading, cheers. Jeff

Calibrating a touch screen monitor

A friend of mine got me a EloTouchSystems 2216 AccuTouch USB TouchMoitor, if was apart of a POS system they were replacing, and I am trying to calibrate it on Linux Mint. I have downloaded the xinput_calibrater app and ran it. Here the output from the program:
Calibrating standard Xorg driver "EloTouchSystems,Inc Elo TouchSystems 2216 AccuTouch® USB Touchmonitor Interface"
current calibration values: min_x=0, max_x=65535 and min_y=0, max_y=65535
If these values are estimated wrong, either supply it manually with the --precalib option, or run the 'get_precalib.sh' script to automatically get it (through HAL).
--> Making the calibration permanent <--
copy the snippet below into '/etc/X11/xorg.conf.d/99-calibration.conf' (/usr/share/X11/xorg.conf.d/ in some distro's)
Section "InputClass"
Identifier "calibration"
MatchProduct "EloTouchSystems,Inc Elo TouchSystems 2216 AccuTouch® USB Touchmonitor Interface"
Option "MinX" "5504"
Option "MaxX" "59519"
Option "MinY" "57834"
Option "MaxY" "6123"
Option "SwapXY" "0" # unless it was already set to 1
Option "InvertX" "0" # unless it was already set
Option "InvertY" "0" # unless it was already set
EndSection
I copied the the snippet as directed to the 99-calibration.conf file, and restarted my computer and nothing happened.
I have tried changing the "InvertX" and "InvertY" values to 1 (changing only one at a time) and rebooting after each time with not success. I am at a lose as to what to do. Can someone offer any suggestions, Please.
P.S. The monitor was manufactured by Fujitsu, and I am using the most current version of Linux Mint.
Additional Information: After posting the question, I realized I did not mention what the touch screen was doing. When I touch the screen and move my finger up and down on the screen, the cursor moves in the opposite direction.

JTAG: How do I know the width of the Instruction Register?

Assumed I have a JTAG-chain with several devices from different manufactures:
How does my software, which shall communicate with a specific system within that chain, known the length of the IR for all the others devices within the chain? I do have to know them to send a certain instruction to my device, right?
It is possible to detect the total length of all IR registers in your JTAG daisy-chain. It is also possible to detect the number of devices (or TAPs) in your chain. But you can't detect the individual IR length of a single TAP.
What you can do: You can read out the JTAG ID code register of all of you TAPs. The ID code register (in DR path) is always 32 bit and gets selected by test-logic-reset.
With the ID code you can identify the existing TAPs and look up in the datasheet the length of the individual IR registers.
And yes: In general you do have to know the individual IR length of all the TAPs in your chain to communicate with one of them.
try here: http://www.fpga4fun.com/JTAG3.html
When IR = '1...1', the BYPASS is selected.
The idea is to send a lot of '1' so regardless of IR length all devices will select BYPASS.

Bluetooth low energy (BLE 112 ) Difference between BGAPI and BGScript

What is the Difference between BGAPI and BGScript ?
And if we write any code for BG profile than how can we burn it in BLE 112?
The BGAPI interface defines the protocol used to talk to the module over USB or serial link.
BGScript is something which runs on the module processor itself, when the USB or serial link is not used.
I have the dongle, BLED112, which is the same thing as BLE112 with a USB connector on it, and the code is "burned" to it using standard USB DFU interface.
The downloading of the code to BLE112 can be done using several methods:
(1) Bring out the DD, DC debug interface pins from your module and use the CC-Debugger (digikey part 296-30207-ND, $55). This works every time. If you have the DKBLE112 kit, the CC-Debugger fits on the 10-pin .050 connector in lower right corner. You can "burn" any firmware and any stack this way. Works awesome.
(2) Hope that the current firmware on the CC2540 has serial bootloader, and load the new firmware (hopefully also containing serial bootloader) using UART. TI has the tools, but it sure seems quite convoluted to me, and I did not try it.

Handle idle sleep from audio virtual driver - Mac OSX

We have an virtual audio device driver similar to Sound flower. This virtual device will be listed in sound system preferences. Whenever our device gets selected in system preferences, it prevents idle sleep. If we switch the selection to default output device, everything works as expected.
If we execute 'pmset -g assertions' command in Terminal, it gives below output
Assertion status system-wide:
ChargeInhibit 0
PreventUserIdleDisplaySleep 0
PreventUserIdleSystemSleep 1
NoRealPowerSources_debug 0
CPUBoundAssertion 0
EnableIdleSleep 1
PreventSystemSleep 0
DisableInflow 0
DisableLowPowerBatteryWarnings 0
ExternalMedia 0
Listed by owning process:
pid 115: [0x0000012c00000073] PreventUserIdleSystemSleep named: MY_DRIVER_IDENTIFER.noidlesleep"
Could any one suggest me some pointers to resolve this issue.
I think this governed by the flag kIOPMPreventIdleSleep, which resides in the capabilityFlags field of the IOPMPowerState struct.
To participate in power management decisions, you'll need to add your device driver to the power management plane, typically in your overridden IOService::start(provider) method:
PMinit();
provider->joinPMtree(this);
registerPowerDriver(this, powerStates, numPowerStates);
where powerStates and numPowerStates specifies an array of power states you want your device to be able to be in. You'll probably not want more than 2 for a virtual device, and maybe you even only need one. I suspect a superclass of your class is setting states that are inhibiting sleep. Once you've registered for power management, your driver will be expected to handle the power management methods such as IOService::setPowerState().
Depending on how you want your device to behave, you might want to create 2 power states, one "live" when playing back or capturing sound (and inhibiting sleep) and the other "idle" when the device isn't doing anything, and allowing sleep.
The power management topic is a bit too big to cover entirely in a StackOverflow answer, so I suggest you read the docs on the stuff I've mentioned above and try clearing the relevant flag in your power state(s).
Hope that helps.