Does NFS retrans effect the application services? - kubernetes

We had an issue, where one of our kubernetes service not able to read the certificates stored in NFS volume. I could see from NFS stats there were retrans happended ( 33 times ) from the status on that particular time. Does the retrans cause any issue with the application service ?
Also, we had issue for a service only in one vm, other services running on different vm but uses the same NFS dont have any isssues.
Here in the above scenerio, we were able to fix the issue - by restarting the service.

Yes, NFS retrans can affect an application's service. The configured duration of nfs retrans varies. If there are several timeouts beyond what an application can endure gracefully, then yes this could be a problem. NFS performance can be dependent on the network (e.g., the proximity of one server to another, and congestion between the two servers).
NFS may facilitate synchronous communication; NFS relies on network connectivity, and its performance varies. Applications that rely on NFS may have minimum performance levels that NFS cannot meet due to delays or performance issues.
Oracle says "one of the major factors affecting NFS performance is the retransmission rate."
RedHat in their man page for NFS says that file operations can be aborted or will involve a "server not responding" message if enough retransmissions happen.
Modern messaging systems facilitate asynchronous communication. There has been a recent widespread adoption of messaging tools in the industry. Some companies re-architect back-end systems to leverage messaging systems. However NFS can still be useful to support application services and possibly the data requirements.
This 20 year old book may be helpful: Managing NFS and NIS: Help for Unix System Administrators Second Edition by Mike Eisler, Ricardo Labiaga, and Hal Stern.
Please refer doc1 and doc2.

Related

How to manage page cache resources when running Kafka in Kubernetes

I've been running Kafka on Kubernetes without any major issue for a while now; however, I recently introduced a cluster of Cassandra pods and started having performance problems with Kafka.
Even though Cassandra doesn't use page cache like Kafka does, it does make frequent writes to disk, which presumably effects the kernel's underlying cache.
I understand that Kubernetes pods are managing memory resources through cgroups, which can be configured by setting memory requests and limits in Kubernetes, but I've noticed that Cassandra's utilization of page cache can increase the number of page faults in my Kafka pods even when they don't seem to be competing for resources (i.e., there's memory available on their nodes).
In Kafka more page faults leads to more writes to disk, which hamper the benefits of sequential IO and compromise disk performance. If you use something like AWS's EBS volumes, this will eventually deplete your burst balance and eventually cause catastrophic failures across your cluster.
My question is, is it possible to isolate page cache resources in Kubernetes or somehow let the kernel know that pages owned by my Kafka pods should be kept in the cache longer than those in my Cassandra pods?
I thought this was an interesting question, so this is a posting of some findings from a bit of digging.
Best guess: there is no way with k8s OOB to do this, but enough tooling is available such that it could be a fruitful area for research and development of a tuning and policy application that could be deployed as a DaemonSet.
Findings:
Applications can use the fadvise() system call to provide guidance to the kernel regarding which file-backed pages are needed by the application and which are not and can be reclaimed.
http://man7.org/linux/man-pages/man2/posix_fadvise.2.html
Applications can also use O_DIRECT to attempt to avoid the use of page cache when doing IO:
https://lwn.net/Articles/457667/
There is some indication that Cassandra already uses fadvise in a way that attempts to optimize for reducing its page cache footprint:
http://grokbase.com/t/cassandra/commits/122qha309v/jira-created-cassandra-3948-sequentialwriter-doesnt-fsync-before-posix-fadvise
There is also some recent (Jan 2017) research from Samsung patching Cassandra and fadvise in the kernel to better utilize multi-stream SSDs:
http://www.samsung.com/us/labs/pdfs/collateral/Multi-stream_Cassandra_Whitepaper_Final.pdf
Kafka is page cache architecture aware, though it doesn't appear to use fadvise directly. The knobs available from the kernel are sufficient for tuning Kafka on a dedicated host:
vm.dirty* for guidance on when to get written-to (dirty) pages back onto disk
vm.vfs_cache_pressure for guidance on how aggressive to be in using RAM for page cache
Support in the kernel for device-specific writeback threads goes way back to the 2.6 days:
https://www.thomas-krenn.com/en/wiki/Linux_Page_Cache_Basics
Cgroups v1 and v2 focus on pid-based IO throttling, not file-based cache tuning:
https://andrestc.com/post/cgroups-io/
That said, the old linux-ftools set of utilities has a simple example of a command-line knob for use of fadvise on specific files:
https://github.com/david415/linux-ftools
So there's enough there. Given specific kafka and cassandra workloads (e.g. read-heavy vs write-heavy), specific prioritizations (kafka over cassandra or vice versa) and specific IO configurations (dedicated vs shared devices), one could emerge with a specific tuning model, and those could be generalized into a policy model.

Docker instead of multiple VMs

So we have around 8 VMs running on a 32 GB RAM and 8 Physical core server. Six of them run a mail server each(Zimbra), two of them run multiple web applications. The load on the servers are very high primarily because of heavy load on each VMs.
We recently came across Docker. It seems to be a cool idea to create containers of applications. Do you think it's a viable idea to run applications of each of these VMs inside 8 Docker Containers. Currently the server is heavily utilized because multiple VMs have serious I/O issues.
Or can docker be utilized in cases where we are only running web applications, and not email or any other infra apps. Do advise...
Docker will certainly alleviate your server's CPU load, removing the overhead from the hypervisor's with that aspect.
Regarding I/O, my tests revealed that Docker has its own overhead on I/O, due to how AUFS (or lately device mapper) works. In that front you will still gain some benefits over the hypervisor's I/O overhead, but not bare-metal performance on I/O. My observations, for my own needs, pointed that Docker was not "bare-metal performance like" when dealing with intense I/O services.
Have you thought about adding more RAM. 64GB or more? For a large zimbra deployment 4GB per VM may not be enough. Zimbra like all messaging and collaboration systems, is an IO bound application.
Having zmdiaglog (/opt/zimbra/libexec/zmdiaglog) data to see if you are allocating memory correctly would help. as per here;
http://wiki.zimbra.com/wiki/Performance_Tuning_Guidelines_for_Large_Deployments#Memory_Allocation

Is my RabbitMQ cluster Active Active or Active Passive?

I have created a cluster consists of three RabbitMQ nodes using join_cluster command.
i.e.
rabbitmqctl –n rabbit2#MYPC1 join_cluster rabbit2#MYPC1
(currently the cluster runs on a single computer)
Questions:
In the documents it says there is one implemetation for active passive and one for active active.
What did I configure?
How do I know?
How can it be changed?
Is there a big performance trade off between Active Active & Active Passive?
What is the best practice to interact with active/active?
i.e. install a load balancer? apache that will round robin
What is the best practice to interact with active/passive?
if I interact with only the active - this is a single point f failure
Thanks.
I have been doing some research into availability options with RabbitMQ and while I am still fairly new, I'll attempt to answer your questions with the knowledge I do have. Please understand that these answers are not intended to be comprehensive.
Before getting to the questions and answers, I think it's worth pointing out that I think using the terms Active/Active and Active/Passive in the context of a cluster running on a single computer does not really apply. Active/Active and Active/Passive are typically terms used to describe highly available clusters where you have a system of more than one logical server (in your case, multiple RabbitMQ clusters), shared/redundant storage, network capabilities, power, etc.
What did I configure?
Without any load balancing for the nodes in your cluster or queue mirroring you have neither, meaning you do not have a highly available cluster.
How do I know?
RabbitMQ does not provide any connection management so traffic with a failed node will not automatically be passed on to a different node, which is required for an active/active cluster. Without queue mirroring you do not have fully redundant nodes in your cluster, which is required for active/passive.
How can it be changed?
Even if you implement load balancing and/or queue mirroring you are missing a number of requirements to offer a highly-available RabbitMQ cluster. Primarily, with a RabbitMQ cluster you only have a single logical broker (at least two are required for an HA cluster).
Is there a big performance trade off between Active Active & Active Passive?
I think you will start seeing performance penalties as you start introducing data replication and/or redundancy, which would affect both Active/Active and Active/Passive. If you are using synchronous data replication then you will see a bigger performance hit than if you replicate data asynchronously. There's a lot more to it, but to me this feels like there may be a bigger performance hit by using Active/Active but this depends heavily on how fast all of the pieces are working together. In Active/Passive where you may be using asynchronous replication across servers your performance may appear better but in a failover situation you would need to wait for that replication to complete before you can switch to your secondary server.
What is the best practice to interact with active/active? i.e. install a load balancer? apache that will round robin
RabbitMQ recommends using a load balancer so that you do not have to leak details about the nodes in your cluster to the clients.
What is the best practice to interact with active/passive? if I interact with only the active - this is a single point of failure
It is a point of failure but with Active/Passive you can implement a failure strategy to retry the next available server or all remaining servers. With these strategies in place you can establish a scenario where the capabilities of your cluster are merely degraded while a failover is happening instead of totally unavailable. Also, you can interact with the passive side but the types of interactions may be very different (i.e. read-only access) since there may be fewer resources available on the passive side and there may be delays in data replication.
Here are some references used to gather this information:
High-Availability Cluster on Wikipedia
Clustering with RabbitMQ
Highly Available Queues in a RabbitMQ Cluster
High Availability in RabbitMQ

How to deploy Node.js in cloud for high availability using multi-core, reverse-proxy, and SSL

I have posted this to ServerFault, but the Node.js community seems tiny there, so I'm hoping this bring more exposure.
I have a Node.js (0.4.9) application and am researching how to best deploy and maintain it. I want to run it in the cloud (EC2 or RackSpace) with high availability. The app should run on HTTPS. I'll worry about East/West/EU full-failover later.
I have done a lot of reading about keep-alive (Upstart, Forever), multi-core utilities (Fugue, multi-node, Cluster), and proxy/load balancers (node-http-proxy, nginx, Varnish, and Pound). However, I am unsure how to combine the various utilities available to me.
I have this setup in mind and need to iron out some questions and get feedback.
Cluster is the most actively developed and seemingly popular multi-core utility for Node.js, so use that to run 1 node "cluster" per app server on non-privileged port (say 3000). Q1: Should Forever be used to keep the cluster alive or is that just redundant?
Use 1 nginx per app server running on port 80, simply reverse proxying to node on port 3000. Q2: Would node-http-proxy be more suitable for this task even though it doesn't gzip or server static files quickly?
Have minimum 2x servers as described above, with an independent server acting as a load balancer across these boxes. Use Pound listening 443 to terminate HTTPS and pass HTTP to Varnish which would round robin load balance across the IPs of servers above. Q3: Should nginx be used to do both instead? Q4: Should AWS or RackSpace load balancer be considered instead (the latter doesn't terminate HTTPS)
General Questions:
Do you see a need for (2) above at all?
Where is the best place to terminate HTTPS?
If WebSockets are needed in the future, what nginx substitutions would you make?
I'd really like to hear how people are setting up current production environments and which combination of tools they prefer. Much appreciated.
It's been several months since I asked this question and not a lot of answer flow. Both Samyak Bhuta and nponeccop had good suggestions, but I wanted to discuss the answers I've found to my questions.
Here is what I've settled on at this point for a production system, but further improvements are always being made. I hope it helps anyone in a similar scenario.
Use Cluster to spawn as many child processes as you desire to handle incoming requests on multi-core virtual or physical machines. This binds to a single port and makes maintenance easier. My rule of thumb is n - 1 Cluster workers. You don't need Forever on this, as Cluster respawns worker processes that die. To have resiliency even at the Cluster parent level, ensure that you use an Upstart script (or equivalent) to daemonize the Node.js application, and use Monit (or equivalent) to watch the PID of the Cluster parent and respawn it if it dies. You can try using the respawn feature of Upstart, but I prefer having Monit watching things, so rather than split responsibilities, I find it's best to let Monit handle the respawn as well.
Use 1 nginx per app server running on port 80, simply reverse proxying to your Cluster on whatever port you bound to in (1). node-http-proxy can be used, but nginx is more mature, more featureful, and faster at serving static files. Run nginx lean (don't log, don't gzip tiny files) to minimize it's overhead.
Have minimum 2x servers as described above in a minimum of 2 availability zones, and if in AWS, use an ELB that terminates HTTPS/SSL on port 443 and communicates on HTTP port 80 to the node.js app servers. ELBs are simple and, if you desire, make it somewhat easier to auto-scale. You could run multiple nginx either sharing an IP or round-robin balanced themselves by your DNS provider, but I found this overkill for now. At that point, you'd remove the nginx instance on each app server.
I have not needed WebSockets so nginx continues to be suitable and I'll revisit this issue when WebSockets come into the picture.
Feedback is welcome.
You should not bother serving static files quickly. If your load is small - node static file servers will do. If your load is big - it's better to use a CDN (Akamai, Limelight, CoralCDN).
Instead of forever you can use monit.
Instead of nginx you can use HAProxy. It is known to work well with websockets. Consider also proxying flash sockets as they are a good workaround until websocket support is ubiquitous (see socket.io).
HAProxy has some support for HTTPS load balancing, but not termination. You can try to use stunnel for HTTPS termination, but I think it's too slow.
Round-robin load (or other statistical) balancing works pretty well in practice, so there's no need to know about other servers' load in most cases.
Consider also using ZeroMQ or RabbitMQ for communications between nodes.
This is an excellent thread! Thanks to everyone that contributed useful information.
I've been dealing with the same issues the past few months setting up the infrastructure for our startup.
As people mentioned previously, we wanted a Node environment with multi-core support + web sockets + vhosts
We ended up creating a hybrid between the native cluster module and http-proxy and called it Drone - of course it's open sourced:
https://github.com/makesites/drone
We also released it as an AMI with Monit and Nginx
https://aws.amazon.com/amis/drone-server
I found this thread researching how to add SSL support to Drone - tnx for recommending ELB but I wouldn't rely on a proprietary solution for something so crucial.
Instead I extended the default proxy to handle all the SSL requests. The configuration is minimal while the SSL requests are converted to plain http - but I guess that's preferable when you're passing traffic between ports...
Feel free to look into it and let me know if it fits your needs. All feedback welcomed.
I have seen AWS load balancer to load balance and termination + http-node-proxy for reverse proxy, if you want to run multiple service per box + cluster.js for mulicore support and process level failover doing extremely well.
forever.js on cluster.js could be good option for extreme care you want to take in terms of failover but that's hardly needed.

MSMQ redundancy

I'm looking into WCF/MSMQ.
Does anyone know how one handles redudancy with MSMQ? It is my understanding that the queue sits on the server, but what if the server goes down and is not recoverable, how does one prevent the messages from being lost?
Any good articles on this topic?
There is a good article on using MSMQ in the enterprise here.
Tip 8 is the one you should read.
"Using Microsoft's Windows Clustering tool, queues will failover from one machine to another if one of the queue server machines stops functioning normally. The failover process moves the queue and its contents from the failed machine to the backup machine. Microsoft's clustering works, but in my experience, it is difficult to configure correctly and malfunctions often. In addition, to run Microsoft's Cluster Server you must also run Windows Server Enterprise Edition—a costly operating system to license. Together, these problems warrant searching for a replacement.
One alternative to using Microsoft's Cluster Server is to use a third-party IP load-balancing solution, of which several are commercially available. These devices attach to your network like a standard network switch, and once configured, load balance IP sessions among the configured devices. To load-balance MSMQ, you simply need to setup a virtual IP address on the load-balancing device and configure it to load balance port 1801. To connect to an MSMQ queue, sending applications specify the virtual IP address hosted by the load-balancing device, which then distributes the load efficiently across the configured machines hosting the receiving applications. Not only does this increase the capacity of the messages you can process (by letting you just add more machines to the server farm) but it also protects you from downtime events caused by failed servers.
To use a hardware load balancer, you need to create identical queues on each of the servers configured to be used in load balancing, letting the load balancer connect the sending application to any one of the machines in the group. To add an additional layer of robustness, you can also configure all of the receiving applications to monitor the queues of all the other machines in the group, which helps prevent problems when one or more machines is unavailable. The cost for such queue-monitoring on remote machines is high (it's almost always more efficient to read messages from a local queue) but the additional level of availability may be worth the cost."
Not to be snide, but you kind of answered your own question. If the server is unrecoverable, then you can't recover the messages.
That being said, you might want to back up the message folder regularly. This TechNet article will tell you how to do it:
http://technet.microsoft.com/en-us/library/cc773213.aspx
Also, it will not back up express messages, so that is something you have to be aware of.
If you prefer, you might want to store the actual messages for processing in a database upon receipt, and have the service be the consumer in a producer/consumer pattern.