Yes, I'm beginner. and I used Webstorm but now using Vscode.
I know to say 'extension' in Vscode.
But sometimes to say 'plugin' in Vscode.(ex. Do you know Vscode's Prettier plugin?)
Can others understand this?
I understand it like this Python's pip and Node's npm to understand.
Just different name.
Is that what I understand right?
There is very thin border line between the two.
Extension and plugins often confused people. And Mostly people believe both are same.
The main difference between the two is that plug-in provides extra functionality which does not modify the core functionality.
While extension is made for modifying core functionality, may be provided due to version change or improvement.
Securing plugins is more complex than extension.
Extension are individual identity so one extension needs one set of privileges, whereas plugins are more complicated and needs to identify privileges for each application runs plugins rather than a whole plugin.
Extension is specific to particular application. It extends functionality of a particular application or software.
While plug-in can be made generalized which may runs independently in coordination with particular application or software.
Related
How do we add our own plugin. Lets say a new add-on or feature which can be installed and used. How do we develop that? I am sorry i am new to this.
Kindly help
Depending on your needs, I suggest you check out:
https://documentation.bloomreach.com/14/library/concepts/open-ui/introduction.html
You can also create various plugins more like the native functionality. Adding such to essentials is described here:
https://documentation.bloomreach.com/14/library/essentials-plugins/overview.html
That doesn't tell you how to create a plugin however. Essentials is just a helper application, the plugin can be various things from services, to configuration, to document types, to hst components... All of that requires some knowledge of the internals of the system. Look around the documentation, you can see how to create various things like workflows, perspectives, and more.
A plugin is no more than a collection of code and configuration bundled together. It could be a frontend thing or a backend thing. So I can't simply tell you how to create them. It can be quite difficult, depending on what you want, to create a plugin. Look into the code of some plugins, you will see that it is basically a java project with some configuration that can be found by the system on startup.
You might want to ask more specifically on what exactly you want to develop. That could lead to more specific advice. It can be daunting when you are starting to work with the cms. With experience it does start to make sense.
I am totally new to creating extensions in VS Code, and all the official examples of extensions are written in Typescript/Javascript, which I have no experience with. Is it possible to create VS Code extensions in other languages, such as Python or C++?
If so, could anyone point me to any resources to get me started?
It is possible by creating a C++ module for Node.js, which can then be loaded like any other node module. Of course, some glue code written in JS or TS is necessary to register the extension and translate calls to/from vscode.
I've gone this way in my ANTLR4 extension, but gave up eventually, because of the troubles I had due to incompatible dependencies (you have to make sure the extension uses the exact same V8 version, which was used to build the underlying Node.js used by vscode, on all supported platforms).
This situation might have change, I don't know, but with that in the background I don't recommend it.
If you want to add support for a new language in vscode you can also write a separate language server, as is mentioned in the linked SO answer. For other type of work, I'm afraid, you have no alternative to use.
No, as #rioV8 said, since VSCode is an electron app and runs on Javascript.
Considering that I am developing an end-user software program (as an uberjar) I am wondering what my options are to make it possible for the user to download a plugin and load that during runtime.
The plugin(s) should come compiled and without source code, so sth. like load is not an option.
What existing libraries (or ways of Java...?) exist to build this on?
EDIT: If you are not sure I would also be satisfied with a way that costs a reboot/-start of the main-program. However, what is important is that the source-code won't be included in any JAR file (neither main application nor plugin-jars, see :omit-source of Leiningen documentation).
To add a jar during runtime, use pomegranate which lets you add a .jar file to the classpath. Plugins of your software should be regular Clojure libs that follow certain conventions that you need to establish:
Make them provide (e. g. in an edn) a symbol to an object implementing a constructor/destructor mechanism such as the Lifecycle protocol in Stuart Sierras component library. In runtime, require and resolve that symbol, start the resulting object and hand it over to rest your programs plugin coordination facilities.
Provide a public API in your program that allows the plugins to interact with it in ways that you coordinate asynchronously e. g. with clojure.core.async (don't let one plugin block the entire program).
Make sure that the plugins have a coordinated way to expose their functionality to each other only if they desire so to enable a high degree of modularity among your plugins. Make sure that your plugin loader is capable of detecting dependencies among plugins and is capable of loading and unloading them in the right order.
I've not tried it myself, but you should in theory be able to get OSGi to work with Clojure.
There's a Clojure / OSGi integration library here:
https://github.com/aav/clojure.osgi
If I were to attempt to role my own solution, I would try using tools.namespace to load and unload plugins. I'm not entirely sure it will work, but it's certainly in the right direction. I think one key piece is that the plugin jars will have to be "installed" in a location that's already on the classpath.
Again, this is only the start of one possible solution. I haven't tried doing this.
Can go run dynamically in order to be used for a plugin based application ?
In eclipse, we can create some plugins that Eclipse can run dynamically.
Would the same thing be possible in Go ?
I'll argue that those are two separate problems :
having dynamic load
having plugins
The first one is simply no : A Go program is statically linked, which means you can't add code to a running program. And which also means you must compile the program to let it integrate plugins.
Fortunately, you can define a program accepting plugins in Go as in most languages, and Go, with interfaces and fast compilation doesn't make that task hard.
Here are two possible approaches :
Solution 1 : Plugin integrated in the main program
Similarly to Eclipse plugins, we can integrate the "plugins" in the main program memory, by simply recompiling the program. In this sense we can for example say that database drivers are plugins.
This may not feel as simple as in Java, as you must have a recompilation and you must in some point of your code import the "plugin" (see how it's done for database drivers) but, given the standardization of Go regarding directories and imports, it seems easy to handle that with a simple makefile importing the plugin and recompiling the application.
Given the ease and speed of compilation in Go, and the standardization of package structure, this seems to me to be a very viable solution.
Solution 2 : Separate process
It's especially easy in Go to communicate and to handle asynchronous calls. Which means you could define a solution based on many process communicating by named pipes (or any networking solution). Note that there is a rpc package in Go. This would probably be efficient enough for most programs and the main program would be able to start and stop the plugin processes. This could very well feel similar to what you have in Eclipse with the added benefits of memory space protection.
A last note from somebody who wrote several Eclipse plugins : you don't want that mess; keep it simple.
Go 1.8 supports plugins (to be released soon Feb 2017.)
https://tip.golang.org/pkg/plugin/
As dystroy already said, it's not possible to load packages at runtime.
In the future (or today with limitations) it may be possible to have this feature with projects like go-eval, which is "the beginning of an interpreter for Go".
A few packages I found to do this:
https://golang.org/pkg/net/rpc/
https://github.com/hashicorp/go-plugin
https://github.com/natefinch/pie
Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 4 years ago.
Improve this question
Wether you call it Addons, Plugins or extra peices of code that is connected with the original software later, it really doesn't matter. I would love to understand how they work, there has to be a simple explanation of how to design a Plugin System. Unfortunately, I never understood it, and there remains a lot of open question in my mind. For example, how does the program find a plugin? how does it interface with it? when is it preferable for a software to have Plugin System?
Thanks for all helpful answers. It seems I asked too open question, fortunately I got keywords to look for. I liked David answer though I am not a Java guy, but his talk made sense to me :)
Plug-ins work by conforming to well-known interfaces that the main application expects to work with.
There are several ways in which a plug-in architecture actually works, but in general, these are the steps:
Plug-ins are designed to match an interface that the application expects. For example, a simple application might require that plug-ins implement a IPlugin interface.
Plug-ins are loaded by the application, usually when the app is starting up
Plug-ins are often provided access to much of the data that the application manages. For example, Firefox plug-ins can access the current web page, and Eclipse plug-ins can access the open files.
Here are two ways (out of several) in which an application can find plug-ins:
The plug-ins are known to exist in a particular folder, and the application knows to load plug-ins from that folder
Each plug-in runs as a service, and the services are designed to work together (this is how an OSGi-based application works)
When plug-ins are found, they are loaded by the application (sometimes the job of a Class Loader).
A software architect might design a plug-in architecture when they expect that either the software provider or the user community will implement new features that were not originally part of the system. Two great examples are Eclipse and Firefox; other applications include Adobe Photoshop (for artistic techniques and graphical tools) and Winamp (for visualizations).
Create an interface that all plugins of a particular type will implement
Write the code that will 'consume' the plugin against the interface only.
Have a dynamic way to load a DLL containing the plugin type that implements your interface (for instance, have a configurable folder location to test whether any DLLs in that folder contain any types that implement your interface, and dynamically load any that do. In .NET this might use Assembly.LoadFile())
If you want to have a look at some source code, Paint.NET is free and open source, and has a plugin architecture.
A program typically has to be designed to look for a plug-in, and the plug-in has to have a standard access point to accept control from the main program. Every application or website does it a little differently.
The simplest type of plug-in is accessed something like this:
if (a plug-in exists/is configured)
call predefined plug-in code
In this case, the main program is coded to only handle a specific set of plug-ins (many php-based wordpress templates are like this). A slightly more advanced plug-in
perform application specific logic
if any plug-in exists that exposes the run_after_app_specific_logic function
call plug-in code
This second case can handle ridiculously complex plug-ins ... the plug-in would just need to implement more functions called by the master program.
Eclipse in an example of a application-framework which is entirely plugin-based, meaning that all functionality is implemented as plugins. There is a thin layer at the bottom for startup/shutdown and plugin-management, but everything else is implemented as plugins on top of that. This results in a framework which can be used for just about everything. More info about Eclipse plugin architecture can be found here: http://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html.
It's very language dependent.
In an interpreted language it simply involves calling a file that follows a pattern.
In C it's pretty hard to do without help. In C+windows a "DLL" can be a plug-in and are often used that way.
In an OO language with reflection, you might create an object that implements an interface and load it reflectively. After it's loaded, you can ignore the fact that it was a plug-in because it's treated as any other object in your code.
.net has a plugin architecture (is it COM?) Well anyway COM can be used as (is?) a plugin system.
Your question is probably too open-ended because of all the possibilities. There is no single answer.
I've never written a plugin system. But this is how I imagine it in my head:
Your program has a subdirectory for plugins (e.g. "C:\Program Files\My Program Name\plugins").
You create plugins as DLL files and place them in the plugins folder.
These DLLs would export functions with predefined names.
When you run your program, it looks through all the DLLs in your plugins folder. In each one it would look for an exported function with a certain name (e.g. "Load") and call that function. The plugin could then do any setup that it needed to do.
The program would then call an exported function on the plugin with a name like "GetPluginName". The plugin would return it's name and the program could then use that name when it displays a list of plugins to the user.
When it comes time to invoke the plugin, the program would call another exported function (maybe "Activate") and probably pass the plugin a pointer to the data that the plugin is going to work on. The program would then do its work on the data.
The plugin might also export another function that the program would call to show a setup dialog where you could change the plugin options.
A plugin system can be implemented in many ways, but the common way for a lot of C/C++ applications is a DLL-based plugin SDK.
The DLL will expose various automated function calls which may allow the plugin to "set itself up" in the running application such as adding menu items, new functionality or extra options for systems (like 3D rendering implementations).
More ofthen there's no need for any special discovery - the plugin mechanizm is generally dumb: Here's a code signature I understand, and here's a call(s) I can make. I have no clue how the thing I'm calling will do the job, but I expect result to be in certain format. And that is pretty much a contract. Now - the plugin will implement the contract and make itself available. In Java, for example "make available" simply means that implementing classes are loaded into memory. JDBC driver for a particular database would be a good example.