How can I visualize GNU remake profile data for multithreaded processes - visualization

I'm trying to profile a large multi-threaded Make-based system.
I recently found GNU remake and was able to use it as a drop-in replacement for gmake.
Since my system is multi-threaded and also has many processes, remake generated a large amount of data ~30K callgrind files(10GB).
I tried using kcachegrind to visualize the data, but it can load a maximum of 499 files which doesn't come close to the amount of data I have.
Are there any tools for visualizing profiling data of this magnitude?
Other tools I tried: gprof2dot
Another idea I had was to stitch multiple callgrind files together. But I didn't find any tools for this as well

Related

Best Time Series Format for Querying and Converting to Matlab (HDF5)

I have somewhat of a unique problem that looks similar to the problem here :
https://news.ycombinator.com/item?id=8368509
I have a high-speed traffic analysis box that is capturing at about 5 Gbps, and picking out specific packets from this to save into some format in a C++ program. Each day there will probably be 1-3 TB written to disk. Since it's network data, it's all time series down to the nanosecond level, but it would be fine to save it at second or millisecond level and have another application sort the embedded higher-resolution timestamps afterwards. My problem is deciding which format to use. My two requirements are:
Be able to write to disk at about 50 MB/s continuously with several different timestamped parameters.
Be able to export chunks of this data into MATLAB (HDF5).
Query this data once or twice a day for analytics purposes
Another nice thing that's not a hard requirement is :
There will be 4 of these boxes running independently, and it would be nice to query across all of them and combine data if possible. I should mention all 4 of these boxes are in physically different locations, so there is some overhead in sharing data.
The second one is something I cannot change because of legacy applications, but I think the first is more important. The types of queries I may want to export into matlab are something like "Pull metric X between time Y and Z", so this would eventually have to go into an HDF5 format. There is an external library called MatIO that I can use to write matlab files if needed, but it would be even better if there wasn't a translation step. I have read the entire thread mentioned above, and there are many options that appear to stand out: kdb+, Cassandra, PyTables, and OpenTSDB. All of these seem to do what I want, but I can't really figure out how easy it would be to get it into the MATLAB HDF5 format, and if any of these would make it harder than others.
If anyone has experience doing something similar, it would be a big help. Thanks!
A KDB+ tickerplant is certainly capable of capturing data at that rate, however there's lots of things you need to make sure (whatever solution you pick)
Do the machine(s) that are capturing the data have enough cores? Best to taskset a tickerplant, for example, to a core that nothing else will contend with
Similarly with disk - SSD, be sure there is no contention on the bus
Separate the workload - can write different types of data (maybe packets can be partioned by source or stream?) to different cpus/disks/tickerplant processes.
Basically there's lots of ways you can cut this. I can say though that with the appropriate hardware KDB+ could do the job. However, given you want HDF5 it's probably even better to have a simple process capturing the data and writing/converting to disk on the fly.

Tools for one-off processing and conversion of large data

I am about to start a research project that will require a lot of data conversion and processing operations. On one hand, the data is rather massive - 10GB is typical for a raw dataset - so efficiency is an issue. On the other hand, many of these operations will be one-off, and rarely re-run, so building a deploy-able application is an overkill. It is not a user application, but mostly an experiment.
Some characteristics and constraints:
A lot of chained format conversions - JSON and XML to tabular format, then some patching, then text indexing, then exporting to some other format, etc.
I have a multi-core machine, but not several machines, at least to begin with.
Data does not fit as a whole in main memory, and from my experience, exploiting several cores is called for.
What are some recommended tools for handling such a project? My preferences are:
Easy-as-possible handling of multiple formats (JSON, XML, CSV)
Supporting multiple sources and sinks (text files, archives, databases)
Makes use of multiple cores
Little as possible administration, deployment issues, etc.
Programming language is not an issue, and I can manage Windows or Linux. Thanks!

What are the real-time compute solutions that can take raw semistructured data as input?

Are there any technologies that can take raw semi-structured, schema-less big data input (say from HDFS or S3), perform near-real-time computation on it, and generate output that can be queried or plugged in to BI tools?
If not, is anyone at least working on it for release in the next year or two?
There are some solutions with big semistructured input and queried output, but they are usually
unique
expensive
secret enough
If you are able to avoid direct computations using neural networks or expert systems, you will be close enough to low latency system. All you need is a team of brilliant mathematicians to make a model of your problem, a team of programmers to realize it in code and some cash to buy servers and get needed input/output channels for them.
Have you taken a look at Splunk? We use it to analyze Windows Event Logs and Splunk does an excellent job indexing this information to allow for fast querying of any string that appears in the data.

How to combine version control with data analysis

I do a lot of solo data analysis, using a combination of tools such as R, Python, PostgreSQL, and whatever I need to get the job done. I use version control software (currently Subversion, though I'm playing around with git on the side) to manage all of my scripts, but the data is perpetually a challenge. My scripts tend to run for a long period of time (hours, or occasionally days) to generate small or large datasets, which I in turn use as input for more scripts.
The challenge I face is in how to "rollback" what I do if I want to check out my scripts from an earlier point in time. Getting the old scripts is easy. Getting the old data would be easy if I put my data into version control, but conventional wisdom seems to be to keep data out of version control because it's so darned big and cumbersome.
My question: how do you combine and/or manage your processed data with a version control system on your code?
Subversion, maybe other [d]vcs as well, supports symbolic links. The idea is to store raw data 'well organized' on a filesystem, while tracking the relation between 'script' and 'generated date' with symbolic links under version control.
data -> data-1.2.3
All your scripts will call load data to retrieve a given dataset, being linked through versioned symbolic link to a given dataset.
Using this approach, code and calculated datasets are tracked within one tool, without bloating your repository with binary data.

Are there any data warehouse frameworks?

I've got a lot of mysql data that I need to generate reports from. It's mostly historic data so it won't be changing much, but it weighs in at 20-30 gigabytes easily and is expected to grow. I currently have a collection of php scripts that will do some complex queries and output csv and excel files. I also use phpMyAdmin with bookmarked queries. I manually edit them to change the parameters. The amount of data is growing and the number of people who need access to it is also growing, so I'm making the time to improve this situation.
I started reading about data warehousing the other day and it seems that this an area that relates to what I need to do. I've read some good articles and am even waiting on a book. I think I'm getting a handle on what these sorts of systems do and what's possible.
Creating a reporting system for my data has always been on a todo list, but until recently I figured it would be a highly niche programing venture. Since I now know data warehousing is a common thing, I figure there must be some sort of reporting/warehousing frames available to ease in the development. I'd gladly skip writing interfaces and scripts to schedule and email reports and the like and stick to writing queries and setting up relations.
I've mostly been a lamp guy, but I'm not above switching languages or platforms. I just need a more robust solution as my one off scripts don't scale well.
So where's a good place to get started?
I'll discuss a few points on the {budget, business utility function, time frame} spectrum out there. For convenience, let's follow the architecture conceptualization you linked to at
WikipediaDataWarehouseArticle
Operational database layer
The source data for the data warehouse - Normalized for In One Place Only data maintenance
Data access layer
The transformation of your source data into your informational access layer. ETL tools to extract, transform, load data into the warehouse fall into this layer.
Informational access layer
• Report-facilitating Data Structure
Data is not maintained here. It is merely a reflection of your source data
Hence, denormalized structures (containing duplicate, but systematically derived data)
are usually most effective here
• Reporting tools
How do you actually allow your users access to the data
• pre-canned reports (simple)
• more dynamic slice-and-dice access methods
The data accessed for reporting and analyzing and the tools for reporting and analyzing data
fall into this layer. And the Inmon-Kimball differences about design methodology,
discussed later in the Wikipedia article, have to do with this layer.
Metadata layer (facilitates automation, organization, etc)
Roll your own (low-end)
For very little out-of-pocket cost, just recognizing the need for the denormalized structures can buy those that are not using it some efficiencies
Get in the ballgame (some outlays required)
You don't need to use all the functionality of a platform right off the bat.
IMO, however, you want to be on a platform that you know will grow, and in the highly competitive and consolidating BI environment, that seems to be one of the four enterprise mega-vendors (my opinion)
Microsoft (the platform of our 110 employee firm)
SAP
Oracle
IBM
BiMarketStateArticle
My firm is at this stage, using some of the ETL capability offered by SQL Server Integration Services (SSIS) and some alternate usage of the open source, but in practice license requiring Talend product in the "Data Access Layer", a denormalized reporting structure (implemented completely in the basic SQL Server database), and SQL Server Reporting Services (SSRS) to largely automate (based on your skill) the production of pre-specified reports. Note that an SSRS "report" is merely a (scalable) XML configuration/specification that gets rendered at runtime via the SSRS engine. Choices such as export to an excel file are simple options.
Serious Commitment (some significant human commitment required)
Notice above that we have yet to utilize the data mining/dynamic slicing/dicing
capabilities of SQL Server Analysis Services. We are working toward that,
but now focused on improving the quality of our data cleansing in the "Data Access Layer".
I hope this helps you to get a sense of where to start looking.
Pentaho has put together a pretty comprehensive suite of products. The products are "free", but be prepared for the usual heavy sell once you fork over your identifying information.
I haven't had a chance to really stretch them as we're a Microsoft shop from one sad end to the other.
I think you should first check out Kimball and Inmon and see if you want to approach your data warehouse in a particular way. Kimball, in particular, lays out a very good framework for the modelling and construction of the warehouse.
There are a number of tools which try to make the process of designing, implementing and managing/operating a Data Warehouse and they each have their strengths and weaknesses and often vastly differing price points. Under the covers you are always going to be best off if you have a good knowledge of warsehousing principles from the Kimball and/or Inmon camps.
As well as tools like Kalido and Wherescape RED (which do similar thing in very different ways), many of the ETL platforms now have good in-built support for the donkey work of implementation - SCD components etc and lineage tracking.
Best though to view all these as tools to be used in the hands of you, the craftsman, they make certain easy things even easier (or even trivial), some hard things easier but some things they just get in they way of IMHO ;) Learn the methodology and principles first and get a good understanding of them and then you will know which tools to apply from your kitbag and when...
It hasn't been updated in a while but there's a nice Data Warehousing/ETL Ruby package called ActiveWarehouse.
But I would check out the Pentaho products like Nick mentioned in another answer. It should easily handle the volume of data you have and may provide you with more ways to slice and dice your data than you could have ever imagined.
The best framework you can currently get is Anchor Modeling.
It might look quite complex because of it's generic structure and built-in capability to historize data.
Also modeling technique is quite different than ERD.
But you end-up with sql code to generate all db objects including 3NF views and:
insert/update handled by triggers
query any point/range in history
you application developers will not see underlying 6NF anchor model.
The technology is open sourced and at the moment is unbeatable.
If you would have AM question you may want to ask on that tag anchor-modeling.
Kimball is the simpler method for data warehousing.
We use Informatica for moving data around, but it doesn't do DW things like indexing by default.
I like the idea of Wherescape RED, as a DW tool and using MS SQL's Linked Servers to obviate the need for an ETL tool.