Are there any data warehouse frameworks? - frameworks

I've got a lot of mysql data that I need to generate reports from. It's mostly historic data so it won't be changing much, but it weighs in at 20-30 gigabytes easily and is expected to grow. I currently have a collection of php scripts that will do some complex queries and output csv and excel files. I also use phpMyAdmin with bookmarked queries. I manually edit them to change the parameters. The amount of data is growing and the number of people who need access to it is also growing, so I'm making the time to improve this situation.
I started reading about data warehousing the other day and it seems that this an area that relates to what I need to do. I've read some good articles and am even waiting on a book. I think I'm getting a handle on what these sorts of systems do and what's possible.
Creating a reporting system for my data has always been on a todo list, but until recently I figured it would be a highly niche programing venture. Since I now know data warehousing is a common thing, I figure there must be some sort of reporting/warehousing frames available to ease in the development. I'd gladly skip writing interfaces and scripts to schedule and email reports and the like and stick to writing queries and setting up relations.
I've mostly been a lamp guy, but I'm not above switching languages or platforms. I just need a more robust solution as my one off scripts don't scale well.
So where's a good place to get started?

I'll discuss a few points on the {budget, business utility function, time frame} spectrum out there. For convenience, let's follow the architecture conceptualization you linked to at
WikipediaDataWarehouseArticle
Operational database layer
The source data for the data warehouse - Normalized for In One Place Only data maintenance
Data access layer
The transformation of your source data into your informational access layer. ETL tools to extract, transform, load data into the warehouse fall into this layer.
Informational access layer
• Report-facilitating Data Structure
Data is not maintained here. It is merely a reflection of your source data
Hence, denormalized structures (containing duplicate, but systematically derived data)
are usually most effective here
• Reporting tools
How do you actually allow your users access to the data
• pre-canned reports (simple)
• more dynamic slice-and-dice access methods
The data accessed for reporting and analyzing and the tools for reporting and analyzing data
fall into this layer. And the Inmon-Kimball differences about design methodology,
discussed later in the Wikipedia article, have to do with this layer.
Metadata layer (facilitates automation, organization, etc)
Roll your own (low-end)
For very little out-of-pocket cost, just recognizing the need for the denormalized structures can buy those that are not using it some efficiencies
Get in the ballgame (some outlays required)
You don't need to use all the functionality of a platform right off the bat.
IMO, however, you want to be on a platform that you know will grow, and in the highly competitive and consolidating BI environment, that seems to be one of the four enterprise mega-vendors (my opinion)
Microsoft (the platform of our 110 employee firm)
SAP
Oracle
IBM
BiMarketStateArticle
My firm is at this stage, using some of the ETL capability offered by SQL Server Integration Services (SSIS) and some alternate usage of the open source, but in practice license requiring Talend product in the "Data Access Layer", a denormalized reporting structure (implemented completely in the basic SQL Server database), and SQL Server Reporting Services (SSRS) to largely automate (based on your skill) the production of pre-specified reports. Note that an SSRS "report" is merely a (scalable) XML configuration/specification that gets rendered at runtime via the SSRS engine. Choices such as export to an excel file are simple options.
Serious Commitment (some significant human commitment required)
Notice above that we have yet to utilize the data mining/dynamic slicing/dicing
capabilities of SQL Server Analysis Services. We are working toward that,
but now focused on improving the quality of our data cleansing in the "Data Access Layer".
I hope this helps you to get a sense of where to start looking.

Pentaho has put together a pretty comprehensive suite of products. The products are "free", but be prepared for the usual heavy sell once you fork over your identifying information.
I haven't had a chance to really stretch them as we're a Microsoft shop from one sad end to the other.

I think you should first check out Kimball and Inmon and see if you want to approach your data warehouse in a particular way. Kimball, in particular, lays out a very good framework for the modelling and construction of the warehouse.

There are a number of tools which try to make the process of designing, implementing and managing/operating a Data Warehouse and they each have their strengths and weaknesses and often vastly differing price points. Under the covers you are always going to be best off if you have a good knowledge of warsehousing principles from the Kimball and/or Inmon camps.
As well as tools like Kalido and Wherescape RED (which do similar thing in very different ways), many of the ETL platforms now have good in-built support for the donkey work of implementation - SCD components etc and lineage tracking.
Best though to view all these as tools to be used in the hands of you, the craftsman, they make certain easy things even easier (or even trivial), some hard things easier but some things they just get in they way of IMHO ;) Learn the methodology and principles first and get a good understanding of them and then you will know which tools to apply from your kitbag and when...

It hasn't been updated in a while but there's a nice Data Warehousing/ETL Ruby package called ActiveWarehouse.
But I would check out the Pentaho products like Nick mentioned in another answer. It should easily handle the volume of data you have and may provide you with more ways to slice and dice your data than you could have ever imagined.

The best framework you can currently get is Anchor Modeling.
It might look quite complex because of it's generic structure and built-in capability to historize data.
Also modeling technique is quite different than ERD.
But you end-up with sql code to generate all db objects including 3NF views and:
insert/update handled by triggers
query any point/range in history
you application developers will not see underlying 6NF anchor model.
The technology is open sourced and at the moment is unbeatable.
If you would have AM question you may want to ask on that tag anchor-modeling.

Kimball is the simpler method for data warehousing.
We use Informatica for moving data around, but it doesn't do DW things like indexing by default.
I like the idea of Wherescape RED, as a DW tool and using MS SQL's Linked Servers to obviate the need for an ETL tool.

Related

Does NoSQL Fit the Bill for Reporting Software?

I am currently developing a software system that imports and normalizes historical data in various formats (XML, JSON, CSV). As of right now, we are using SQL server, and are looking to find the best replacement for this tool (Postgres or NoSQL). 90% of the time, the (archived/historical/static)data is accessed via a web client, and is used in a READ only format with users picking and choosing canned reports. Changes to the data only occur to update incorrect information .
The replacement DB must be able to store and report on 10s of millions of rows very quickly, and scale across multiple servers with ease (data replication, clustering, etc). There must also be data integrity, so if I update one KPI (lets say Cost per Hr), then all the reports that rely on the KPI will be updated accordingly.
Having no prior experience with NoSQL databases, I am wondering if it is even the right choice to use in a reporting software. We would like to allow for users to create their own custom reports, and that means being able to query any data as opposed to our canned reports, but I don't know if this would throw a wrench in the comparison between SQL vs NoSQL.
There are a few too many variables in the question, to comfortably answer it in entirety, but here's an attempt.
Your choice in SQL vs NoSQL should be based on data structure. Scalability is generally a second-tier concern, and is only slightly easy on some NoSQL platforms, but as always, isn't always free.
If you're looking for 10s of millions of rows 'very quickly' you are seriously testing the limits of what you can do with it. An RDBMS would allow you a plethora of options at the cost of speed, and a NoSQL although quite fast an inputting at that speed, would make you code most of the RDBMS smartness in your application. Chose your poison.
Updating a metric and 'automagically' updating reports is clearly a business-logic smartness, that shouldn't be tied down to platform selection.
PostgreSQL has in the near past, really picked up a lot of arsenal to deal with file formats (JSON et al) and is clearly worth a try (sans easy scalability).
Having said that, you should really investigate Postgres' otherwise forgotten asset, FDWs. You can clearly consider using a NoSQL setup to ingest large unstructured data, and thence utilize postgres' powerful semantics to use that and create a asynchronous yet structured backend for your application. If done well, that could mean the best of both worlds.

Neo4j instead of relational database

I am implementing a sinatra/rails based web portal that might eventually have few many:many relationships between tables/models. This is a one man team and part time but real world app.
I discussed my entity with someone and was advised to try neo4j. Coming from real 'non-sexy' enterprise world, my inclination is to use relational db until it stops scaling or becomes a nightmare because of sharding etc and then think about anything else.
HOWEVER,
I am using postgres for the first time in this project along with datamapper and its taking me time to get started very fast
I am just trying out few things and building more use cases so I consitently have to update my schema (prototyping idea and feedback from beta) . I wont have to do this in neo4j (except changing my queries)
Seems like its very easy to setup search using neo4j . But Postgres can do full text search as well.
Postgres recently announced support for json and javascript. Wondering if I should just stick with PG and invest more time learning PG (which has a good community) instead neo4j.
Looking for usecases where neo4j is better, especially at protyping/initial phase of a project. I understand if the website grows I might end up having multiple persistent technologies like s3, relational (PG), mongo etc.
Also it would be good to know how it plays out with Rails/Ruby ecosystem.
Update1:
I got a lot of good answers and seems like the right thing to do is stick with Postgres for now (especially since I deploy to heroku)
However the idea of being schema-less is tempting. Basically I am thinking of a approach where you don't define a datamodel until you have say 100-150 users and you have yourself figured out a good schema (business use cases) for your product , while you are just demoing the concept and getting feedback with limited signups. Then one can decide a schema and start with relational.
Would be nice to know if there are easy to use schema/less persistence option (based on ease to use/setup for new user) that might give up say scaling etc.
Graph databases should be considered if you have a really chaotic data model. They were needed to express highly complex relationships between entities. To do that, they store relationships at the data level whereas RDBMS use a declarative approach. Storing relationships only makes sense if these relationships are very different, otherwise you'll just end up duplicating data over and over, taking a lot of space for nothing.
To require such variety in relationships you'd have to handle huge amount of data. This is where graph databases shines because instand of doing tons of joins, they just pick a record and follow his relationships. To support my statement : you'll notice that every use cases on Neo4j's website are dealing with very complex data.
In brief, if you don't feel concerned with what I said above, I think you should use another technology. If this is just about scaling, schemalessness or starting fast a project, then look at other NoSQL solutions (more specifically, either column or document oriented databases). Otherwise you should stick with PostgreSQL. You could also, like you said, consider polyglot persistence,
About your update, you might consider hStore. I think it fits your requirements. It's a PostgreSQL module which also works on Heroku.
I don't think I agree that you should only use a graph database when your data model is very complex. I'm sure they could handle a simple data model/relationships as well.
If you have no prior experience with Neo4j or Postgres, then most likely both with take quite a bit of time to learn well.
Some things to keep in mind when picking:
It's not just about development against a database technology. You should consider deployment as well. How easy is it to deploy and scale Postgres/Neo4j?
Consider the community and tools around each technology. Is there a data mapper for Neo4j like there is for Postgres?
Consider that the data models are considerably different between the two. If you can already think relationally, then I'd probably stick with Postgres. If you go with Neo4j you're going to be making a lot of mistakes for several months with your data models.
Over time I've learned to keep it simple when I can. Postgres might be the boring choice compared to Neo4j, but boring doesn't keep you up at night. =)
Also I never see anyone mention it, but you should look at Riak (http://basho.com/riak/) too. It's a document database that also provides relationships (links) between objects. Not as mature as a graph database, but it can connect a few entities quickly.
The most appropriate choice depends on what problem you are trying to solve.
If you just have a few many to many tables, a relational database can be fine. In general, there is better OR-mapper support for relational databases, as they are much older and have a standardized interface and row-column structure. They also have been improved on for a long time, so they are stable and optimized for what they are doing.
A graph database is better if e.g. your problem is more about the connections between entities, especially if you need higher distance connections, like "detect cycles (of unspecified length)", some "what do friends-of-a-friend like". Things like that get unwieldy when restricted to SQL joins. A problem specific language like cypher in case of Neo4j makes that much more concise. On the downside, there are mappers between graph dbs and objects, but not for every framework and language under the sun.
I recently implemented a system prototype using neo4j and it was very useful to be able to talk about the structure and connections of our data and be able to model that one to one in the data storage. Also, adding other connections between data points was easy, neo4j being a schemaless storage. We ended up switching to mongodb due to troubles with write performance, but I don't think we could have finished the prototype with that in the same time.
Other NoSQL datastores like document based, column, key-value also cover specific usecases. Polyglot persistence is definitively something to look at, so keep your choice of backend reasonably separated from your business logic, to allow you to change your technology later if you learned something new.

NoSQL for time series/logged instrument reading data that is also versioned

My Data
It's primarily monitoring data, passed in the form of Timestamp: Value, for each monitored value, on each monitored appliance. It's regularly collected over many appliances and many monitored values.
Additionally, it has the quirky feature of many of these data values being derived at the source, with the calculation changing from time to time. This means that my data is effectively versioned, and I need to be able to simply call up only data from the most recent version of the calculation. Note: This is not versioning where the old values are overwritten. I simply have timestamp cutoffs, beyond which the data changes its meaning.
My Usage
Downstream, I'm going to have various undefined data mining/machine learning uses for the data. It's not really clear yet what those uses are, but it is clear that I will be writing all of the downstream code in Python. Also, we are a very small shop, so I can really only deal with so much complexity in setup, maintenance, and interfacing to downstream applications. We just don't have that many people.
The Choice
I am not allowed to use a SQL RDBMS to store this data, so I have to find the right NoSQL solution. Here's what I've found so far:
Cassandra
Looks totally fine to me, but it seems like some of the major users have moved on. It makes me wonder if it's just not going to be that much of a vibrant ecosystem. This SE post seems to have good things to say: Cassandra time series data
Accumulo
Again, this seems fine, but I'm concerned that this is not a major, actively developed platform. It seems like this would leave me a bit starved for tools and documentation.
MongoDB
I have a, perhaps irrational, intense dislike for the Mongo crowd, and I'm looking for any reason to discard this as a solution. It seems to me like the data model of Mongo is all wrong for things with such a static, regular structure. My data even comes in (and has to stay in) order. That said, everybody and their mother seems to love this thing, so I'm really trying to evaluate its applicability. See this and many other SE posts: What NoSQL DB to use for sparse Time Series like data?
HBase
This is where I'm currently leaning. It seems like the successor to Cassandra with a totally usable approach for my problem. That said, it is a big piece of technology, and I'm concerned about really knowing what it is I'm signing up for, if I choose it.
OpenTSDB
This is basically a time-series specific database, built on top of HBase. Perfect, right? I don't know. I'm trying to figure out what another layer of abstraction buys me.
My Criteria
Open source
Works well with Python
Appropriate for a small team
Very well documented
Has specific features to take advantage of ordered time series data
Helps me solve some of my versioned data problems
So, which NoSQL database actually can help me address my needs? It can be anything, from my list or not. I'm just trying to understand what platform actually has code, not just usage patterns, that support my super specific, well understood needs. I'm not asking which one is best or which one is cooler. I'm trying to understand which technology can most natively store and manipulate this type of data.
Any thoughts?
It sounds like you are describing one of the most common use cases for Cassandra. Time series data in general is often a very good fit for the cassandra data model. More specifically many people store metric/sensor data like you are describing. See:
http://rubyscale.com/blog/2011/03/06/basic-time-series-with-cassandra/
http://www.datastax.com/dev/blog/advanced-time-series-with-cassandra
http://engineering.rockmelt.com/post/17229017779/modeling-time-series-data-on-top-of-cassandra
As far as your concerns with the community I'm not sure what is giving you that impression, but there is quite a large community (see irc, mailing lists) as well as a growing number of cassandra users.
http://www.datastax.com/cassandrausers
Regarding your criteria:
Open source
Yes
Works well with Python
http://pycassa.github.com/pycassa/
Appropriate for a small team
Yes
Very well documented
http://www.datastax.com/docs/1.1/index
Has specific features to take advantage of ordered time series data
See above links
Helps me solve some of my versioned data problems
If I understand your description correctly you could solve this multiple ways. You could start writing a new row when the version changes. Alternatively you could use composite columns to store the version along with the timestamp/value pair.
I'll also note that Accumulo, HBase, and Cassandra all have essentially the same data model. You will still find small differences around the data model in regards to specific features that each database offers, but the basics will be the same.
The bigger difference between the three will be the architecture of the system. Cassandra takes its architecture from Amazon's Dynamo. Every server in the cluster is the same and it is quite simple to setup. HBase and Accumulo or more direct clones of BigTable. These have more moving parts and will require more setup/types of servers. For example, setting up HDFS, Zookeeper, and HBase/Accumulo specific server types.
Disclaimer: I work for DataStax (we work with Cassandra)
I only have experience in Cassandra and MongoDB but my experience might add something.
So your basically doing time based metrics?
Ok if I understand right you use the timestamp as a versioning mechanism so that you query per a certain timestamp, say to get the latest calculation used you go based on the metric ID or whatever and get ts DESC and take off the first row?
It sounds like a versioned key value store at times.
With this in mind I probably would not recommend either of the two I have used.
Cassandra is too rigid and it's too heirachal, too based around how you query to the point where you can only make one pivot of graph data from (I presume you would wanna graph these metrics) the columfamily which is crazy, hence why I dropped it. As for searching (which Facebook use it for, and only that) it's not that impressive either.
MongoDB, well I love MongoDB and I am an elite of the user group and it could work here if you didn't use a key value storage policy but at the end of the day if your mind is not set and you don't like the tech then let me be the very first to say: don't use it! You will be no good at a tech that you don't like so stay away from it.
Though I would picture this happening in Mongo much like:
{
_id: ObjectID(),
metricId: 'AvailableMessagesInQueue',
formula: '4+5/10.01',
result: NaN
ts: ISODate()
}
And you query for the latest version of your calculation by:
var results = db.metrics.find({ 'metricId': 'AvailableMessagesInQueue' }).sort({ ts: -1 });
var latest = results.getNext();
Which would output the doc structure you see above. Without knowing more of exactly how you wish to query and the general servera and app scenario etc thats the best I can come up with.
I fond this thread on HBase though: http://mail-archives.apache.org/mod_mbox/hbase-user/201011.mbox/%3C5A76F6CE309AD049AAF9A039A39242820F0C20E5#sc-mbx04.TheFacebook.com%3E
Which might be of interest, it seems to support the argument that HBase is a good time based key value store.
I have not personally used HBase so do not take anything I say about it seriously....
I hope I have added something, if not you could try narrowing your criteria so we can answer more dedicated questions.
Hope it helps a little,
Not a plug for any particular technology but this article on Time Series storage using MongoDB might provide another way of thinking about the storage of large amounts of "sensor" data.
http://www.10gen.com/presentations/mongodc-2011/time-series-data-storage-mongodb
Axibase Time-Series Database
Open source
There is a free Community Edition
Works well with Python
https://github.com/axibase/atsd-api-python. There are also other language wrappers, for example ATSD R client.
Appropriate for a small team
Built-in graphics and rule engine make it productive for building an in-house reporting, dashboarding, or monitoring solution with less coding.
Very well documented
It's hard to beat IBM redbooks, but we're trying. API, configuration, and administration is documented in detail and with examples.
Has specific features to take advantage of ordered time series data
It's a time-series database from the ground-up so aggregation, filtering and non-parametric ARIMA and HW forecasts are available.
Helps me solve some of my versioned data problems
ATSD supports versioned time-series data natively in SE and EE editions. Versions keep track of status, change-time and source changes for the same timestamp for audit trails and reconciliations. It's a useful feature to have if you need clean, verified data with tracing. Think energy metering, PHMR records. ATSD schema also supports series tags, which you could use to store versioning columns manually if you're on CE edition or you need to extend default versioning columns: status, source, change-time.
Disclosure - I work for the company that develops ATSD.

recommendations for a dbms for an EAV system with mostly insert and select operations needs on .net stack

In the project I have been working on, the data modeling requirements are:
A system consisting of N number of clients with each having N number of events. An event is an entity with a required name and timestamp at which it occurs. Optionally, an event may have N number of properties (key/value pares) defining attributes that a client want to store with the particular instance of that event.
The system will have mostly:
inserts – events are logged but never updated.
selects – reports/actions will be generated/executed based on events and properties of any possible combinations.
The requirements reflect an entity-attribute-value (EAV) data model. After researching for sometimes, I feel that a relational dbms like Sql Server might not be a good fit for this. (correct me if I'm wrong!)
So I'm leaning toward NoSql option like MongoDb/CouchDb/RavenDb etc.
My questions are:
What is the best fit in available NoSql solutions keeping in view of my system's heavy insert/select needs?
I'm also open for relational option if these requirements can be translated into relational schema. Although I personally doubt this, but after reading performance DBA answers (like referenced here), I got curious. However, I couldn't figure out myself an optimal relational model for my requirements, perhaps the system being rather generic.
thanks!
MongoDB really shines when you write unstructured data to it (like your event). Also, it is able to sustain pretty heavy write load. However, it's not very good for reporting. At least, for reporting in the traditional sense.
So, if your reporting needs are simple, you might get away with some simple map-reduce jobs. Otherwise you can export data to a relational database (nightly job, for example) and report the hell out of it.
Such hybrid solution is pretty common (in my experience).

ORM for large volume database

I am working on new project which have data oriented means very large volume of data (increasing day by day). So kindly suggest me which type of approach I should use to achieve desire functionality with out any hurdles.
Is database fully normalized?
Which ORM (linq2sql, entity framework) is suitable for this project?
Should I use stored procedures, db functions, triggers, etc?
Whether or not the database is normalized is something you need to know and need to answer!
As for the ORM: it really depends on the type of data and its structure.
Linq-to-SQL is a very simplistic ORM that basically just does a 1:1 mapping of tables to domain objects. As long as you don't need anything else - that's fine. Linq-to-SQL is no longer being actively developed, so that might be a drawback. Also, stored proc support is a bit limited.
Entity Framework (at least in .NET 4) is great and is the current ORM of choice at Microsoft - it's being actively developed, has a lot of backing, lot of flexibility. It offers database-first, model-first and code-first development styles, it supports POCO objects and self-tracking entities, and is very well integrated with stored procs (you can define a stored proc for INSERT, UPDATE, DELETE on every single entity, if you wish to do so). It would be my first choice.
NHibernate is a great, enterprise-level ORM, well established and being actively developed - certainly not a "dead-end" like Linq-to-SQL. I've used it a few years ago, and while it's great and powerful, it's also a bit harder to learn than EF4 (no visual designer, needs more manual labor, manual effort). It's great if you really need all its power and if you're willing to invest the necessary up-front learning time.
As for the database: stored procs are definitely worth while investigating, especially if you need to encapsulate certain database processing into a nice proc to call from your code. I would be rather careful and defensive about using triggers and functions too much - they have their place, but they shouldn't be overused, since they do carry some problems with them (mostly performance problems and problems of "discoverability" - lots of devs don't think about triggers that could be in place, and will not understand what's going on).
#Xulfee, that's a fairly broad question and a lot depends on the nature of your project. The approaches you reference affect a lot of aspects of the overall architecture. For example:
Is the database fully normalized?
Database normalization generally aids in tackling the problem of complexity of your conceptual model. When properly (note I did not say, "fully") normalized, your model should be fairly straight-forward and consumers of the database (developers, your BI team, domain experts, etc) should be able to get a good idea of the business problems that are being approached with your database. That having been said, normalization can lead to a fairly large reporting and analysis problem. When writing a query for a report against a large, fairly normalized database, you may introduce performance problems by joining a lot of tables. Enter snowflake schemas. So, to your question: it depends. What are you reporting requirements? How many transactions on average do you need to support? How complex is your conceptual model? Are you able to break the database into smaller models that are associated, rather than one large one?
Which ORM (linq2sql, entity framework) is suitable for this project?
Again, an ORM is a tool. You must ask yourself what is the specific job that you are trying to accomplish? The choice of an ORM (or in even using an ORM in the first place) is a decision that I would recommend you make fairly early on as it can affect everything from performance to development team cohesion. There are a lot of great choices out there:
Linq-To-Sql
NHibernate
Entity Framework
LLBLGen
Each of the above frameworks does a fantastic job of abstracting your persistence layer. Each has it's pro's and cons - the majority of which come down to infrastructure concerns: performance, configuration, schema/language compatibility, persistence patterns, vendor support. Given the choice, I would ask myself which of the frameworks is my development team most comfortable with? Which one supports the level of system activity that I expect? With which vendor am I willing to "throw-in"? I have seen fairly successful systems that use fairly small ORM's (i.e. Stackoverflow uses a modified version of Linq-To-Sql) as well as fairly large systems fail with fairly complex ORM's.
Should I use stored procedures, db functions, triggers, etc?
This question centers around your persistence store and how you use it (as well as how angry you want to make your DBA :) ). The use of sprocs (stored procedures) lends itself to allowing your dba to provide security at a very granular level. In addition, if the orm you are using generates dynamic sql, you might benefit from the database's ability to cache queries generated using sprocs. DB functions can be a double-sided blade. They offer the ability to add functionality and intelligence to your model, while at the same time allowing you to take a fairly large hit performance-wise (i.e. table-valued UDF's). Triggers have their own pitfalls and should be used with caution, but that discussion could get rather involved. The bottom-line for me in this case is: how much logic in the database do you want to support, and how important is security and performance? Do you have a qualified dba (not just a developer who knows how to write queries, but a dba who is capable of performance tuning and data modeling)? How big is your database? How complex is your data? Think about all of these questions and more when determining how you want to manage you data.
In summary, you are asking some good questions. Don't confuse infrastructure needs with implementation needs. Decide on a stack and run with it, don't get bogged-down in implementation details to the point at which you are unable to successfully complete the project. With the right level of abstraction, you may find it easier to try out new and different technologies without risking the overall success of the project. And remember: there's nothing wrong with experimenting and trying new things, just be prepared to fail gracefully and test, test, test!