Aggregate $lookup so slow - mongodb

1st stage:
$Match
{
delFlg: false
}
2nd stage:
$lookup
{
from: "parkings",
localField: "parking_id",
foreignField: "_id",
as: "parking",
}
Using 2 IDX (ID & parking_ID).
In MongoDB /Linux/ Compass explain plan almost 9000ms.
In Local MongoDB server explain plan 1400ms.
Is there any problem? Why this our production server running so slow?
Full Explain Plan
Explain Plan
Query Performance Summary
Documents returned:
71184
Actual query execution time (ms):
8763
Query used the following indexes:
2
_id_
delFlg_1
explainVersion
"1"
stages
Array
serverInfo
Object
serverParameters
Object
command
Object
ok
1
$clusterTime
Object
operationTime
Timestamp({ t: 1666074389, i: 3 })
Using MongoDB 5.0.5 Version
Local MongoDB 6.0.2 Version

Unfortunately the explain output that was provided is mostly truncated (eg Array and Object hiding most of the important information). Even without that there should be some meaningful observations that we can make.
As always I suggest starting with more clearly defining what your ultimate goals are. What is considered "so slow" and how quickly would the operation need to return in order to be acceptable for your use case? As outlined below, I doubt there is much particular room for improvement with the current schema. You may need to rethink the approach entirely if you are looking for improvements that are several order of magnitude in nature.
Let's consider what this operation is doing:
The database goes to an entry in the { delFlg: 1 } index that has a value of false.
It then goes to FETCH that full document from the collection.
Based on the value of the parking_id field, it performs an IXSCAN of the { _id: 1 } index on the parkings collection. If a matching index entry is discovered then the database will FETCH the full document from the other collection and add it to the new parking array field that is being generated.
This full process then repeats 71,183 more times.
Using 8763ms as the duration, that means that the database performed each full iteration of the work described above more than 8 times per millisecond (8.12 ~= 71184 (iters) / 8763 (ms)). I think that sounds pretty reasonable and is unlikely to be something that you can meaningfully improve on. Scaling up the hardware that the database is running on may provide some incremental improvements, but it is generally costly, not scalable, and likely not worthwhile if you are looking for more substantial improvements.
You also mentioned two different timings and database versions in the question. If I understood correctly, it was mentioned that the (explain) operation takes ~9 seconds on version 5.0 and about 1.4 seconds on version 6.0. While there is far too little information here to say for sure, one reason for that may be associated with improvements for $lookup that were introduced in version 6.0. Indeed from their 7 Big Reasons to Upgrade to MongoDB 6.0 article, they claim the following:
The performance of $lookup has also been upgraded. For instance, if there is an index on the foreign key and a small number of documents have been matched, $lookup can get results between 5 and 10 times faster than before.
This seems to match your situation and observations pretty directly.
Apart from upgrading, what else might improve performance here? Well, if many/most documents in the source collection have { delFlg: false } then you may wish to get rid of the { delFlg: 1 } index. Indexes provide benefits when the size of the results they are retrieving are small relative to the overall size of the data in the collection. But as the percentage grows, the overhead of scanning most of the index plus randomly fetching all of the data quickly becomes less effective than just scanning the full collection directly. It is mentioned in the comments that invoices collection contains 70k documents, so this predicate on delFlg doesn't seem to remove hardly any results at all.
One other thing really stands out is this statement from the comments "parkings contains 16 documents". Should the information from those 16 documents just be moved into the parkings documents directly instead? If the two are commonly accessed together and if the parkings information doesn't change very often, then combining the two would reduce a lot of overhead and would further improve performance.
Two additional components about explain that are worth keeping in mind:
The command does not factor in network time to actually transmit the results to the client. Depending on the size of the documents and the physical topology of the environment, this network time could add another meaningful delay to the operation. Be sure that the client really needs all of the data that is being sent.
Depending on the verbosity, explain will measure the time it takes to run the operation through completion. Since there are no blocking stages in your aggregation pipeline, we would expect your initial batch of documents to be returned to the client in much less time. Apart from networking, that time may be around 12ms (which is approximately (101 docs / 71184 ) * 8763) for 5.0.

Related

MongoDB: reduce read size and RAM needed with project?

I am designing a MongoDB database that looks something like this:
registry:{
id:1,
duration:123,
score:3,
text:"aaaaaaaaaaaaaaaaaaaaaaaaaaaa"
}
The text field is very big compared to the rest. I sometimes need to perform analytics queries that average the duration or the score, but never use the text.
I have queries that are more specific, and retrieve all the information about a single document. But in this queries I could spend more time making two queries to retrieve all the data.
My question is, if I make a query like this:
db.registries.aggregate( [
{
$group: {
_id: null,
averageDuration: { $avg: "$duration" },
}
}
] )
Would it need to read the data from the transcript field? That would make the query much slower and it would take a lot of RAM. If that is the case it would be better to split the records in two and have something like this right?:
registry:{
id:1,
duration:123,
score:3,
}
registry_text:{
id:1,
text:"aaaaaaaaaaaaaaaaaaaaaaaaaaaa"
}
Thanks a lot!
I don't know how the server works in this case but I expect that, for caching reasons, the server will load complete documents into memory when it reads them from disk. Disk reads are very slow (= expensive in time taken) and I expect server will aggressively use memory if it can to avoid reads.
An important note here is that the documents are stored on disk as lists of key-value pairs comprising their contents. To not load a field from disk the server would have to rebuild the document in question as part of reading it since there are length fields involved. I don't see this happening in practice.
So, once the documents are in memory I assume they are there with all of their fields and I don't expect you can tune this.
When you are querying, the server may or may not drop individual fields but this would only change the memory requirements for the particular query. Generally these memory requirements are dwarfed by the overall database cache size and aggregation pipelines. So I don't think it really matters at what point a large field is dropped from a document during query processing (assuming you project it out in the query).
I think this isn't a worthwhile matter to try to ponder/optimize. If you have a real system with real workloads, you'll be much more pressed to optimize something else.
If you are concerned with memory usage when the amount of available memory is consumer-sized (say, under 16 gb), just get more memory - it's insanely cheap given how much time you'd spend working around lack of it (whether we are talking about provisioning bigger AWS instances or buying more sticks of RAM).
You should be able to use $project to limit the fields read.
As a general advice, don't try to normalize the data with MongoDB as you would with SQL. Also, it's often more performant to read documents plain from DB and do the processing on your server.
I have found this answer that seems to indicate that project needs to fetch all document in the database server, it only reduces bandwith
When using projection to remove unused fields, the MongoDB server will
have to fetch each full document into memory (if it isn't already
there) and filter the results to return. This use of projection
doesn't reduce the memory usage or working set on the MongoDB server,
but can save significant network bandwidth for query results depending
on your data model and the fields projected.
https://dba.stackexchange.com/questions/198444/how-mongodb-projection-affects-performance

Optimizing for random reads

First of all, I am using MongoDB 3.0 with the new WiredTiger storage engine. Also using snappy for compression.
The use case I am trying to understand and optimize for from a technical point of view is the following;
I have a fairly large collection, with about 500 million documents that takes about 180 GB including indexes.
Example document:
{
_id: 123234,
type: "Car",
color: "Blue",
description: "bla bla"
}
Queries consist of finding documents with a specific field value. Like so;
thing.find( { type: "Car" } )
In this example the type field should obviously be indexed. So far so good. However the access pattern for this data will be completely random. At a given time I have no idea what range of documents will be accessed. I only know that they will be queried on indexed fields, returning at the most 100000 documents at a time.
What this means in my mind is that the caching in MongoDB/WiredTiger is pretty much useless. The only thing that needs to fit in the cache are the indexes. An estimation of the working set is hard if not impossible?
What I am looking for is mostly tips on what kinds of indexes to use and how to configure MongoDB for this kind of use case. Would other databases work better?
Currently I find MongoDB to work quite well on somewhat limited hardware (16 GB RAM, non SSD disc). Queries return in decent time and obviously instantly if the result set is already in the cache. But as already stated this will most likely not be the typical case. It is not critical that the queries are lightning fast, more so that they are dependable and that the database will run in a stable manner.
EDIT:
Guess I left out some important things. The database will be mostly for archival purposes. As such, data arrives from another source in bulk, say once a day. Updates will be very rare.
The example I used was a bit contrived but in essence that is what queries look like. When I mentioned multiple indexes I meant the type and color fields in that example. So documents will be queried on using these fields. As it is now, we only care about returning all documents that have a specific type, color etc. Naturally, the plan we have is to only query on fields that we have an index for. So ad-hoc queries are off the table.
Right now the index sizes are quite manageable. For the 500 million documents each of these indexes are about 2.5GB and fit easily in RAM.
Regarding average data size of an operation, I can only speculate at this point. As far as I know, typical operations return about 20k documents, with an average object size in the range of 1200 bytes. This is the stat reported by db.stats() so I guess it is for the compressed data on disc, and not how much it actually takes once in RAM.
Hope this bit of extra info helped!
Basically, if you have a consistent rate of reads that are uniformly at random over type (which is what I'm taking
I have no idea what range of documents will be accessed
to mean), then you will see stable performance from the database. It will be doing some stable proportion of reads from cache, just by good luck, and another stable proportion by reading from disk, especially if the number and size of documents are about the same between different type values. I don't think there's a special index or anything to help you besides just better hardware. Indexes should remain in RAM because they'll constantly be being used.
I suppose more information would help, as you mention only one simple query on type but then talk about having multiple indexes to worry about keeping in RAM. How much data does the average operation return? Do you ever care to return a subset of docs of certain type or only all of them? What do inserts and updates to this collection look like?
Also, if the documents being read are truly completely random over the dataset, then the working set is all of the data.

How to insert quickly to a very large collection

I have a collection of over 70 million documents. Whenever I add new documents in batches (lets say 2K), the insert operation is really slow. I suspect that is because, the mongo engine is comparing the _id's of all the new documents with all the 70 million to find out any _id duplicate entries. Since the _id based index is disk-resident, it'll make the code a lot slow.
Is there anyway to avoid this. I just want mongo to take new documents and insert it as they are, without doing this check. Is it even possible?
Diagnosing "Slow" Performance
Your question includes a number of leading assumptions about how MongoDB works. I'll address those below, but I'd advise you to try to understand any performance issues based on facts such as database metrics (i.e. serverStatus, mongostat, mongotop), system resource monitoring, and information in the MongoDB log on slow queries. Metrics need to be monitored over time so you can identify what is "normal" for your deployment, so I would strongly recommend using a MongoDB-specific monitoring tool such as MMS Monitoring.
A few interesting presentations that provide very relevant background material for performance troubleshooting and debugging are:
William Zola: The (Only) Three Reasons for Slow MongoDB Performance
Aska Kamsky: Diagnostics and Debugging with MongoDB
Improving efficiency of inserts
Aside from understanding where your actual performance challenges lie and tuning your deployment, you could also improve efficiency of inserts by:
removing any unused or redundant secondary indexes on this collection
using the Bulk API to insert documents in batches
Assessing Assumptions
Whenever I add new documents in batches (lets say 2K), the insert operation is really slow. I suspect that is because, the mongo engine is comparing the _id's of all the new documents with all the 70 million to find out any _id duplicate entries. Since the _id based index is disk-resident, it'll make the code a lot slow.
If a collection has 70 million entries, that does not mean that an index lookup involves 70 million comparisons. The indexed values are stored in B-trees which allow for a small number of efficient comparisons. The exact number will depend on the depth of the tree and how your indexes are built and the value you're looking up .. but will be on the order of 10s (not millions) of comparisons.
If you're really curious about the internals, there are some experimental storage & index stats you can enable in a development environment: Storage-viz: Storage Visualizers and Commands for MongoDB.
Since the _id based index is disk-resident, it'll make the code a lot slow.
MongoDB loads your working set (portion of data & index entries recently accessed) into available memory.
If you are able to create your ids in an approximately ascending order (for example, the generated ObjectIds) then all the updates will occur at the right side of the B-tree and your working set will be much smaller (FAQ: "Must my working set fit in RAM").
Yes, I can let mongo use the _id for itself, but I don't want to waste a perfectly good index for it. Moreover, even if I let mongo generate _id for itself won't it need to compare still for duplicate key errors?
A unique _id is required for all documents in MongoDB. The default ObjectId is generated based on a formula that should ensure uniqueness (i.e. there is an extremely low chance of returning a duplicate key exception, so your application will not get duplicate key exceptions and have to retry with a new _id).
If you have a better candidate for the unique _id in your documents, then feel free to use this field (or collection of fields) instead of relying on the generated _id. Note that the _id is immutable, so you shouldn't use any fields that you might want to modify later.

Partial doc updates to a large mongo collection - how to not lock up the database?

I've got a mongo db instance with a collection in it which has around 17 million records.
I wish to alter the document structure (to add a new attribute in the document) of all 17 million documents, so that I dont have to problematically deal with different structures as well as make queries easier to write.
I've been told though that if I run an update script to do that, it will lock the whole database, potentially taking down our website.
What is the easiest way to alter the document without this happening? (I don't mind if the update happens slowly, as long as it eventually happens)
The query I'm attempting to do is:
db.history.update(
{ type : { $exists: false }},
{
$set: { type: 'PROGRAM' }
},
{ multi: true }
)
You can update the collection in batches(say half a million per batch), this will distribute the load.
I created a collection with 20000000 records and ran your query on it. It took ~3 minutes to update on a virtual machine and i could still read from the db in a separate console.
> for(var i=0;i<20000000;i++){db.testcoll.insert({"somefield":i});}
The locking in mongo is quite lightweight, and it is not going to be held for the whole duration of the update. Think of it like 20000000 separate updates. You can read more here:
http://docs.mongodb.org/manual/faq/concurrency/
You do actually care if your update query is slow, because of the write lock problem on the database you are aware of, both are tightly linked. It's not a simple read query here, you really want this write query to be as fast as possible.
Updating the "find" part is part of the key here. First, since your collection has millions of documents, it's a good idea to keep the field name size as small as possible (ideally one single character : type => t). This helps because of the schemaless nature of mongodb collections.
Second, and more importantly, you need to make your query use a proper index. For that you need to workaround the $exists operator which is not optimized (several ways to do it there actually).
Third, you can work on the field values themselves. Use http://bsonspec.org/#/specification to estimate the size of the value you want to store, and eventually pick a better choice (in your case, you could replace the 'PROGRAM' string by a numeric constant for example and gain a few bytes in the process, multiplied by the number of documents to update for each update multiple query). The smaller the data you want to write, the faster the operation will be.
A few links to other questions which can inspire you :
Can MongoDB use an index when checking for existence of a field with $exists operator?
Improve querying fields exist in MongoDB

Does providing a projection argument to find() limit the data that is added to Mongo's working set?

In Mongo, suppose I have a collection mycollection that has fields a, b, and huge. I very frequently want to perform queries, mapreduce, updates, etc. on a, and b and very occassionally want to return huge in query results as well.
I know that db.mycollection.find() will scan the entire collection and result in Mongo attempting to add the whole collection to the working set, which may exceed the amount of RAM I have available.
If I instead call db.mycollection.find({}, { a : 1, b : 1 }), will this still result in the whole collection being added to the working set or only the terms of my projection?
MongoDB can use something called covered queries: http://docs.mongodb.org/manual/applications/indexes/#create-indexes-that-support-covered-queries these allow you to load all the values from the index rather than the disk, or memory, if those documents are in memory at the time.
Be warned that you cannot use covered queries on a full table scan, the condition, projection and sort must all be within the index; i.e.:
db.col.ensureIndex({a:1,b:1});
db.col.find({a:1}, {_id:0, a:1, b:1})(.sort({b:1}));
Would work (the sort is in brackets because it is not totally needed). You can add _id to your index if you intend to return that too.
Map Reduce does not support covered queries, there is no way to project only a certain amount of fields into the MR, as far as I know; maybe there is some hack I do not know of. Map Reduce only supports a $match like operator in terms of input query with a separate parameter for the sort of the incoming query ( http://docs.mongodb.org/manual/applications/map-reduce/ ).
Note that for updates I believe only atomic operations: http://docs.mongodb.org/manual/tutorial/isolate-sequence-of-operations/ (excluding findAndModify) do not load the document into your working set, however, believe is the keyword there.
Considering you need to do both MR and normal find and update on these records I would strongly recommend you look into checking why you are paging in so much data and whether you really do need to do it that often. It seems like you are trying to do too much processing in a short and frequent amount of time.
On the other hand, if this is a script which runs every night or something then I would not worry too much about its excessive working set (i.e. score board recalc script).