Horizontal mean with polars expressions - python-polars

I have an expression and I need to create a column for row mean.
I saw in the documentation that with the expression it is impossible to set an axis and mean provide mean for all data frame.
Is it possibile to compute row mean? Maybe with a fold?
For example, let us take this frame:
df = pl.DataFrame(
{
"foo": [1, 2, 3],
"bar": [6, 7, 8],
}
)
With df.mean(axis=1) but I'm writing a context with several expression and I would like to compute h-mean inside that context.
Thanks.

df = pl.DataFrame(
{
"foo": [1, 2, 3],
"bar": [6, 7, 8],
}
)
df.with_column(
(pl.sum(pl.all()) / 2).alias("mean")
)
shape: (3, 3)
┌─────┬─────┬──────┐
│ foo ┆ bar ┆ mean │
│ --- ┆ --- ┆ --- │
│ i64 ┆ i64 ┆ f64 │
╞═════╪═════╪══════╡
│ 1 ┆ 6 ┆ 3.5 │
├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌┤
│ 2 ┆ 7 ┆ 4.5 │
├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌┤
│ 3 ┆ 8 ┆ 5.5 │
└─────┴─────┴──────┘
If the horizontal aggregations get more complicated, I would recommend using pl.fold or pl.reduce.

Related

Polars: Unnesting columns algorithmically without a for loop

I am working with multiple parquet datasets that were written with nested structs (sometimes multiple levels deep). I need to output a flattened (no struct) schema. Right now the only way I can think to do that is to use for loops to iterate through the columns. Here is a simplified example where I'm for looping.
while len([x.name for x in df if x.dtype == pl.Struct]) > 0:
for col in df:
if col.dtype == pl.Struct:
df = df.unnest(col.name)
This works, maybe that is the only way to do it, and if so it would be helpful to know that. But Polars is pretty neat and I'm wondering if there is a more functional way to do this without all the looping and reassigning the df to itself.
If you have a df like this:
df=pl.DataFrame({'a':[1,2,3], 'b':[2,3,4], 'c':[3,4,5], 'd':[4,5,6], 'e':[5,6,7]}).select([pl.struct(['a','b']).alias('ab'), pl.struct(['c','d']).alias('cd'),'e'])
You can unnest the ab and cd at the same time by just doing
df.unnest(['ab','cd'])
If you don't know in advance what your column names and types are in advance then you can just use a list comprehension like this:
[col_name for col_name,dtype in zip(df.columns, df.dtypes) if dtype==pl.Struct]
We can now just put that list comprehension in the unnest method.
df=df.unnest([col_name for col_name,dtype in zip(df.columns, df.dtypes) if dtype==pl.Struct])
If you have structs inside structs like:
df=pl.DataFrame({'a':[1,2,3], 'b':[2,3,4], 'c':[3,4,5], 'd':[4,5,6], 'e':[5,6,7]}).select([pl.struct(['a','b']).alias('ab'), pl.struct(['c','d']).alias('cd'),'e']).select([pl.struct(['ab','cd']).alias('abcd'),'e'])
then I don't think you can get away from some kind of while loop but this might be more concise:
while any([x==pl.Struct for x in df.dtypes]):
df=df.unnest([col_name for col_name,dtype in zip(df.columns, df.dtypes) if dtype==pl.Struct])
This is a minor addition. If you're concerned about constantly re-looping through a large number of columns, you can create a recursive formula to address only structs (and nested structs).
def unnest_all(self: pl.DataFrame):
cols = []
for next_col in self:
if next_col.dtype != pl.Struct:
cols.append(next_col)
else:
cols.extend(next_col.struct.to_frame().unnest_all().get_columns())
return pl.DataFrame(cols)
pl.DataFrame.unnest_all = unnest_all
So, using the second example by #Dean MacGregor above:
df = (
pl.DataFrame(
{"a": [1, 2, 3], "b": [2, 3, 4], "c": [
3, 4, 5], "d": [4, 5, 6], "e": [5, 6, 7]}
)
.select([pl.struct(["a", "b"]).alias("ab"), pl.struct(["c", "d"]).alias("cd"), "e"])
.select([pl.struct(["ab", "cd"]).alias("abcd"), "e"])
)
df
df.unnest_all()
>>> df
shape: (3, 2)
┌───────────────┬─────┐
│ abcd ┆ e │
│ --- ┆ --- │
│ struct[2] ┆ i64 │
╞═══════════════╪═════╡
│ {{1,2},{3,4}} ┆ 5 │
├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┤
│ {{2,3},{4,5}} ┆ 6 │
├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┤
│ {{3,4},{5,6}} ┆ 7 │
└───────────────┴─────┘
>>> df.unnest_all()
shape: (3, 5)
┌─────┬─────┬─────┬─────┬─────┐
│ a ┆ b ┆ c ┆ d ┆ e │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ i64 ┆ i64 ┆ i64 ┆ i64 ┆ i64 │
╞═════╪═════╪═════╪═════╪═════╡
│ 1 ┆ 2 ┆ 3 ┆ 4 ┆ 5 │
├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
│ 2 ┆ 3 ┆ 4 ┆ 5 ┆ 6 │
├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
│ 3 ┆ 4 ┆ 5 ┆ 6 ┆ 7 │
└─────┴─────┴─────┴─────┴─────┘
And using the first example:
df = pl.DataFrame(
{"a": [1, 2, 3], "b": [2, 3, 4], "c": [
3, 4, 5], "d": [4, 5, 6], "e": [5, 6, 7]}
).select([pl.struct(["a", "b"]).alias("ab"), pl.struct(["c", "d"]).alias("cd"), "e"])
df
df.unnest_all()
>>> df
shape: (3, 3)
┌───────────┬───────────┬─────┐
│ ab ┆ cd ┆ e │
│ --- ┆ --- ┆ --- │
│ struct[2] ┆ struct[2] ┆ i64 │
╞═══════════╪═══════════╪═════╡
│ {1,2} ┆ {3,4} ┆ 5 │
├╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┤
│ {2,3} ┆ {4,5} ┆ 6 │
├╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┤
│ {3,4} ┆ {5,6} ┆ 7 │
└───────────┴───────────┴─────┘
>>> df.unnest_all()
shape: (3, 5)
┌─────┬─────┬─────┬─────┬─────┐
│ a ┆ b ┆ c ┆ d ┆ e │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ i64 ┆ i64 ┆ i64 ┆ i64 ┆ i64 │
╞═════╪═════╪═════╪═════╪═════╡
│ 1 ┆ 2 ┆ 3 ┆ 4 ┆ 5 │
├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
│ 2 ┆ 3 ┆ 4 ┆ 5 ┆ 6 │
├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
│ 3 ┆ 4 ┆ 5 ┆ 6 ┆ 7 │
└─────┴─────┴─────┴─────┴─────┘
In the end, I'm not sure that this saves you much wall-clock time (or RAM).
The other answers taught me a lot. I encountered a new situation where I wanted to easily be able to get each column labeled with all the structs it came from. i.e. for
pl.col("my").struct.field("test").struct.field("thing")
I wanted to recover
my.test.thing
as a string which I could easily use when reading a subset of columns with pyarrow via
pq.ParquetDataset(path).read(columns = ["my.test.thing"])
Since there are many hundreds of columns and the nesting can go quite deep, I wrote functions to do a depth first search on the schema, extract the columns in that pyarrow friendly format, then I can use those to select each column unnested all in one go.
First, I worked with the pyarrow schema because I couldn't figure out how to drill into the structs in the polars schema:
schema = df.to_arrow().schema
navigating structs in that schema is quirky, at the top level the structure behaves differently from deeper in. I ended up writing two functions, the first to navigate the top level structure and the second to continue the search below:
def schema_top_level_DFS(pa_schema):
top_level_stack = list(range(len(pa_schema)))
while top_level_stack:
working_top_level_index = top_level_stack.pop()
working_element_name = pa_schema.names[working_top_level_index]
if type(pa_schema.types[working_top_level_index]) == pa.lib.StructType:
second_level_stack = list(range(len(pa_schema.types[working_top_level_index])))
while second_level_stack:
working_second_level_index = second_level_stack.pop()
schema_DFS(pa_schema.types[working_top_level_index][working_second_level_index],working_element_name)
else:
column_paths.append(working_element_name)
def schema_DFS(incoming_element,upstream_names):
current_name = incoming_element.name
combined_names = ".".join([upstream_names,current_name])
if type(incoming_element.type) == pa.lib.StructType:
stack = list(range(len(incoming_element.type)))
while stack:
working_index = stack.pop()
working_element = incoming_element.type[working_index]
schema_DFS(working_element,combined_names)
else:
column_paths.append(combined_names)
So that running
column_paths = []
schema_top_level_DFS(schema)
gives me column paths like
['struct_name_1.inner_struct_name_2.thing1','struct_name_1.inner_struct_name_2.thing2]
to actually do the unnesting, I wasn't sure how to do better than a function with a case statement:
def return_pl_formatting(col_string):
col_list = col_string.split(".")
match len(col_list):
case 1:
return pl.col(col_list[0]).alias(col_string)
case 2:
return pl.col(col_list[0]).struct.field(col_list[1]).alias(col_string)
case 3:
return pl.col(col_list[0]).struct.field(col_list[1]).struct.field(col_list[2]).alias(col_string)
case 4:
return pl.col(col_list[0]).struct.field(col_list[1]).struct.field(col_list[2]).struct.field(col_list[3]).alias(col_string)
case 5:
return pl.col(col_list[0]).struct.field(col_list[1]).struct.field(col_list[2]).struct.field(col_list[3]).struct.field(col_list[4]).alias(col_string)
case 6:
return pl.col(col_list[0]).struct.field(col_list[1]).struct.field(col_list[2]).struct.field(col_list[3]).struct.field(col_list[4]).struct.field(col_list[5]).alias(col_string)
Then get my unnested and nicely named df with:
df.select([return_pl_formatting(x) for x in column_paths])
To show the output on the example from #Dean MacGregor
test = (
pl.DataFrame(
{"a": [1, 2, 3], "b": [2, 3, 4], "c": [
3, 4, 5], "d": [4, 5, 6], "e": [5, 6, 7]}
)
.select([pl.struct(["a", "b"]).alias("ab"), pl.struct(["c", "d"]).alias("cd"), "e"])
.select([pl.struct(["ab", "cd"]).alias("abcd"), "e"])
)
column_paths = []
schema_top_level_DFS(test.to_arrow().schema)
print(test.select([return_pl_formatting(x) for x in column_paths]))
┌─────┬───────────┬───────────┬───────────┬───────────┐
│ e ┆ abcd.cd.d ┆ abcd.cd.c ┆ abcd.ab.b ┆ abcd.ab.a │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ i64 ┆ i64 ┆ i64 ┆ i64 ┆ i64 │
╞═════╪═══════════╪═══════════╪═══════════╪═══════════╡
│ 5 ┆ 4 ┆ 3 ┆ 2 ┆ 1 │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 6 ┆ 5 ┆ 4 ┆ 3 ┆ 2 │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 7 ┆ 6 ┆ 5 ┆ 4 ┆ 3 │
└─────┴───────────┴───────────┴───────────┴───────────┘

In Polars how do I print all elements of a list column?

I have a Polars DataFrame with a list column. I want to control how many elements of a pl.List column are printed.
I've tried pl.pl.Config.set_fmt_str_lengths() but this only restricts the number of elements if set to a small value, it doesn't show more elements for a large value.
I'm working in Jupyterlab but I think it's a general issue.
import polars as pl
N = 5
df = (
pl.DataFrame(
{
'id': range(N)
}
)
.with_row_count("value")
.groupby_rolling(
"id",period=f"{N}i"
)
.agg(
pl.col("value")
)
)
df
shape: (5, 2)
┌─────┬───────────────┐
│ id ┆ value │
│ --- ┆ --- │
│ i64 ┆ list[u32] │
╞═════╪═══════════════╡
│ 0 ┆ [0] │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ 1 ┆ [0, 1] │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ 2 ┆ [0, 1, 2] │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ 3 ┆ [0, 1, ... 3] │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ 4 ┆ [0, 1, ... 4] │
└─────┴───────────────┘
pl.Config.set_tbl_rows(100)
And more generally, I would try looking at dir(pl.Config)
You can use the following config parameter from the Polars Documentation to set the length of the output e.g. 100.
import Polars as pl
pl.Config.set_fmt_str_lengths(100)
Currently I do not think you can, directly; the documentation for Config does not list any such method, and for me (in VSCode at least) set_fmt_str_lengths does not affect lists.
However, if your goal is simply to be able to see what you're working on and you don't mind a slightly hacky workaround, you can simply add a column next to it where you convert your list to a string representation of itself, at which point pl.Config.set_fmt_str_lengths(<some large n>) will then display however much of it you like. For example:
import polars as pl
pl.Config.set_fmt_str_lengths(100)
N = 5
df = (
pl.DataFrame(
{
'id': range(N)
}
)
.with_row_count("value")
.groupby_rolling(
"id",period=f"{N}i"
)
.agg(
pl.col("value")
).with_column(
pl.col("value").apply(lambda x: ["["+", ".join([f'{i}' for i in x])+"]"][0]).alias("string_repr")
)
)
df
shape: (5, 3)
┌─────┬───────────────┬─────────────────┐
│ id ┆ value ┆ string_repr │
│ --- ┆ --- ┆ --- │
│ i64 ┆ list[u32] ┆ str │
╞═════╪═══════════════╪═════════════════╡
│ 0 ┆ [0] ┆ [0] │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ 1 ┆ [0, 1] ┆ [0, 1] │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ 2 ┆ [0, 1, 2] ┆ [0, 1, 2] │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ 3 ┆ [0, 1, ... 3] ┆ [0, 1, 2, 3] │
├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ 4 ┆ [0, 1, ... 4] ┆ [0, 1, 2, 3, 4] │
└─────┴───────────────┴─────────────────┘

Polars: how to add a column in front?

What would be the most idiomatic (and efficient) way to add a column in front of a polars data frame? Same thing like .with_column but add it at index 0?
You can select in the order you want your new DataFrame.
df = pl.DataFrame({
"a": [1, 2, 3],
"b": [True, None, False]
})
df.select([
pl.lit("foo").alias("z"),
pl.all()
])
shape: (3, 3)
┌─────┬─────┬───────┐
│ z ┆ a ┆ b │
│ --- ┆ --- ┆ --- │
│ str ┆ i64 ┆ bool │
╞═════╪═════╪═══════╡
│ foo ┆ 1 ┆ true │
├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ foo ┆ 2 ┆ null │
├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ foo ┆ 3 ┆ false │
└─────┴─────┴───────┘

Filter DataFrame using within-group expression

Assuming I already have a predicate expression, how do I filter with that predicate, but apply it only within groups? For example, the predicate might be to keep all rows equal to the maximum or within a group. (There could be multiple rows kept in a group if there is a tie.)
With my dplyr experience, I thought that I could just .groupby and then .filter, but that does not work.
import polars as pl
df = pl.DataFrame(dict(x=[0, 0, 1, 1], y=[1, 2, 3, 3]))
expression = pl.col("y") == pl.col("y").max()
df.groupby("x").filter(expression)
# AttributeError: 'GroupBy' object has no attribute 'filter'
I then thought I could apply .over to the expression, but that does not work either.
import polars as pl
df = pl.DataFrame(dict(x=[0, 0, 1, 1], y=[1, 2, 3, 3]))
expression = pl.col("y") == pl.col("y").max()
df.filter(expression.over("x"))
# RuntimeError: Any(ComputeError("this binary expression is not an aggregation:
# [(col(\"y\")) == (col(\"y\").max())]
# pherhaps you should add an aggregation like, '.sum()', '.min()', '.mean()', etc.
# if you really want to collect this binary expression, use `.list()`"))
For this particular problem, I can invoke .over on the max, but I don't know how to apply this to an arbitrary predicate I don't have control over.
import polars as pl
df = pl.DataFrame(dict(x=[0, 0, 1, 1], y=[1, 2, 3, 3]))
expression = pl.col("y") == pl.col("y").max().over("x")
df.filter(expression)
# shape: (3, 2)
# ┌─────┬─────┐
# │ x ┆ y │
# │ --- ┆ --- │
# │ i64 ┆ i64 │
# ╞═════╪═════╡
# │ 0 ┆ 2 │
# ├╌╌╌╌╌┼╌╌╌╌╌┤
# │ 1 ┆ 3 │
# ├╌╌╌╌╌┼╌╌╌╌╌┤
# │ 1 ┆ 3 │
# └─────┴─────┘
If you had updated to polars>=0.13.0 your second try would have worked. :)
df = pl.DataFrame(dict(
x=[0, 0, 1, 1],
y=[1, 2, 3, 3])
)
df.filter((pl.col("y") == pl.max("y").over("x")))
shape: (3, 2)
┌─────┬─────┐
│ x ┆ y │
│ --- ┆ --- │
│ i64 ┆ i64 │
╞═════╪═════╡
│ 0 ┆ 2 │
├╌╌╌╌╌┼╌╌╌╌╌┤
│ 1 ┆ 3 │
├╌╌╌╌╌┼╌╌╌╌╌┤
│ 1 ┆ 3 │
└─────┴─────┘

How to assign Exponential Moving Averages after groupby in python polars

I have just started using polars in python and I'm coming from pandas.
I would like to know how can I replicate the below pandas code in python polars
import pandas as pd
import polars as pl
df['exp_mov_avg_col'] = df.groupby('agg_col')['ewm_col'].transform(lambda x : x.ewm(span=14).mean())
I have tried the following:
df.groupby('agg_col').agg([pl.col('ewm_col').ewm_mean().alias('exp_mov_avg_col')])
but this gives me a list of exponential moving averages per provider, I want that list to be assigned to a column in original dataframe to the correct indexes, just like the pandas code does.
You can use window functions which apply an expression within a group defined by .over("group").
df = pl.DataFrame({
"agg_col": [1, 1, 2, 3, 3, 3],
"ewm_col": [1, 2, 3, 4, 5, 6]
})
(df.select([
pl.all().exclude("ewm_col"),
pl.col("ewm_col").ewm_mean(alpha=0.5).over("agg_col")
]))
Ouputs:
shape: (6, 2)
┌─────────┬──────────┐
│ agg_col ┆ ewm_col │
│ --- ┆ --- │
│ i64 ┆ f64 │
╞═════════╪══════════╡
│ 1 ┆ 1.0 │
├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┤
│ 1 ┆ 1.666667 │
├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┤
│ 2 ┆ 3.0 │
├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┤
│ 3 ┆ 4.0 │
├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┤
│ 3 ┆ 4.666667 │
├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┤
│ 3 ┆ 5.428571 │
└─────────┴──────────┘