REST API - PUT or GET? - rest

I am designing and building a REST API. I understand the basic concept underlying the different request types. In particular PUT requests are intended for updating data.
I have a number of cases where an API call will modify the database, changing the values of a data object's attributes. However, the new values are not sent by the client but rather are implicit in the specific endpoint invoked. There are arguments needed to select the object to be modified, but not to supply attribute values for that object.
Originally I set these up to be PUT requests. However, I am now wondering whether they should be GET requests instead, because the body does not in fact contain update data.
Which would be recommended?

Just because the body doesn't contain update data doesn't mean it is not an update. Look at it from user's or at least from your API user's point of view. Is it an update from their point of view or retrieval of an object where update is not important from their point of view. If it is an update from user's point of view use PUT.

Originally I set these up to be PUT requests. However, I am now wondering whether they should be GET requests instead, because the body does not in fact contain update data.
If the semantics of the request are a change to the representation(s) of a resource on the server, then GET is inappropriate.
If the payload/entity enclosed in the request is not a candidate representation of the target resource ("make your representation look like this one right here"), then PUT is inappropriate.
"Update yourself however you see fit, here is some information that will help" will normally use POST.
POST serves many useful purposes in HTTP, including the general purpose of "this action isn’t worth standardizing." -- Roy Fielding, 2009
POST is the general solution for requests that are intended to modify resource state; PUT (and PATCH) are specializations with narrower semantics (specifically, remote authoring).

Related

REST API Design: Path variable vs request body on UPDATE (Best practices)

When creating an UPDATE endpoint to change a resource, the ID should be set in the path variable and also in the request body.
Before updating a resource, I check if the resource exists, and if not, I would respond with 404 Not Found.
Now I ask myself which of the two information I should use and if I should check if both values are the same.
For example:
PUT /users/42
// request body
{
"id": 42,
"username": "user42"
}
You should PUT only the properties you can change into the request body and omit read-only properties. So you should check the id in the URI, because it is the only one that should exist in the message.
It is convenient to accept the "id" field in the payload. But you have to be sure it is the same as the path parameter. I solve this problem by setting the id field to the value of the path parameter (be sure to explain that in the Swagger of the API). In pseudo-code :
idParam = request.getPathParam("id");
object = request.getPayload();
object.id = idParam;
So all these calls are equivalent :
PUT /users/42 + {"id":"42", ...}
PUT /users/42 + {"id":"41", ...}
PUT /users/42 + {"id":null, ...}
PUT /users/42 + {...}
Why do you need the id both in URL and in the body? because now you have to validate that they are both the same or ignore one in any case. If it is a requirement for some reason, than pick which one is the one that is definitive and ignore the other one. If you don't have to have this strange duplication, than I'd say pass it in the body only
If you take a closer look at how HTTP works you might notice that the URI used to send a request to is also used as key for caching results. Any non-safe operation performed on that URI, such as POST, PUT, PATCH, will lead to (intermediary) caches automatically invalidating any stored responses for that URI. As such, if you use an other URI than the actual resource URI you are actually bypassing that feature and risk getting served outdated state from caches. As caching is one of the few constraints REST has simply skipping all caching via certain directives isn't ideal in first place.
In regards to including the ID of the resource or domain entity in the URI and/or in the payload: A common mistake in designing so-called REST APIs is that the domain object is mapped in a 1:1 manner onto a resource. We had a customer once who went through a merger and in a result they ended up with the same products being addressed by multiple IDs. In order to reduce the data in their DB they at one point tried to consolidate their data and continue. But they had to support still the old URIs they exposed for their products. In the end they realized that exposing the product ID via the URI wasn't ideal in their situation as it lead to plenty of downstream changes that affected their customers. As such, a recommendation here is to use UUIDs that don't give the target resource any semantic meaning and don't ever change. If the product ID in the back changes it doesn't affect the exposed URI at all. Sure, you might need a further table/collection to map from the product to the actual resource URI but you in the end designed your system with the eventuality of change which it now is more likely to coop with.
I've read so many times that the product ID shouldn't be part of the resource as it is already present in the URI. First, the whole URI is a unique identifier of that resource and not only a part of it. Next as mentioned above, IMO the product ID shouldn't be part of the URI in first place but it should be part of the resources' state. After all, the product ID is part of the products properties and therefore should be included there accordingly. As such, the media type exposed should contain all the necessities that a client is able to identify the product ID off the payload. The media type the resource's state is exchange with should also provide means to include the ID if you want to perform an update. I.e. if you take HTML as example, here you get served a HTML form by the server which basically teaches you where to send the request to, which HTTP operation to use, which media-type to marshal the request with and the actual properties of the resource, including the ones you are not meant to change. HTML does this i.e. via hidden input fields. Other form-based media types, such as HAL forms, JsonForms or Ion, might provide other mechanisms though.
So, to sum my post up:
Don't map the product ID onto URIs. Use a mapping from product ID to UUIDs instead
Use form-based media-types that support clients in creating requests. These media types should allow to include unmodifiable properties, such as hidden input fields and the like

Should API PUT endpoint receive all parameters, even if they are not editable?

There is a object of a name Car in the backend database. It contains several fields:
id
name
age
vinNumber
retailerId
There is also a API that elevates adding and editing the car:
POST /car - creates a car
PUT /car/{carId} - updates a car
User of a API can provide name, age and vinNumber while creating a car in a POST body.
When updating a car user can edit name and age. VinNumber is not enabled to be edited after creating a car.
Also retailerId is not editable since it comes from another system to the backend database.
Since that said, we have two fields that should not be edited with the API: vinNumber and retailerId.
So, taking into account REST idempotency, should the PUT request require the user of the API vinNumber and retailerId to be provided also, that were received earlier by GET request? In spite these parameters should not be editable?
An important thing to recognize -- the HTTP specification describes the semantics of an HTTP request; what does this message mean? It allows clients and servers implemented by different organizations to collaborate without requiring a direct partnership between the two.
The point being that a generic client can prepare a request for a generic server without needing out of band information.
PUT, semantically, is a request that the server change its current representation of a resource to match the client's local copy.
If "the server" was just an anemic data store (a facade in front of a file system, or a document database), then the effect of PUT at the server would just be to write the message-body as is into storage.
The point of REST, and the uniform interface, is that your server should always understand the messages the same way that the anemic facade understands them.
Similarly, your server should use the same shared semantics for its responses.
If the representations you are working with include vinNumber and retailId, then the client should be sending those fields unless the request is to remove them from the representation altogether (which may or may not be allowed, depending on whether or not they are required).
The server should understand that the request missing those fields is trying to remove them, and a request with new values in those fields is trying to change them. It can then decide what it wants to do with that request, and send the corresponding response.
Roy Fielding wrote about GET semantics in 2002:
HTTP does not attempt to require the results of a GET to be safe. What it does is require that the semantics of the operation be safe, and therefore it is a fault of the implementation, not the interface or the user of that interface, if anything happens as a result that causes loss of property (money, BTW, is considered property for the sake of this definition).
The same idea holds for PUT (and also the other HTTP methods); we hold the implementation responsible for loss of property if its handling of the request doesn't match the semantics.
According to the PUT request documentation- one should provide the complete data (ie vinNumber and retailerId also) - https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods
You could use PATCH instead for such cases.
Also what we done initally and i have see many times is POST /car/{carId}

REST delete multiple items in the batch

I need to delete multiple items by id in the batch however HTTP DELETE does not support a body payload.
Work around options:
1. #DELETE /path/abc?itemId=1&itemId=2&itemId=3 on the server side it will be parsed as List of ids and DELETE operation will be performed on each item.
2. #POST /path/abc including JSON payload containing all ids. { ids: [1, 2, 3] }
How bad this is and which option is preferable? Any alternatives?
Update: Please note that performance is a key here, it is not an option execute delete operation for each individual id.
Along the years, many people fell in doubt about it, as we can see in the related questions here aside. It seems that the accepted answers ranges from "for sure do it" to "its clearly mistreating the protocol". Since many questions was sent years ago, let's dig into the HTTP 1.1 specification from June 2014 (RFC 7231), for better understanding of what's clearly discouraged or not.
The first proposed workaround:
First, about resources and the URI itself on Section 2:
The target of an HTTP request is called a "resource". HTTP does not limit the nature of a resource; it merely defines an interface that might be used to interact with resources. Each resource is identified by a Uniform Resource Identifier (URI).
Based on it, some may argue that since HTTP does not limite the nature of a resource, a URI containing more than one id would be possible. I personally believe it's a matter of interpretation here.
About your first proposed workaround (DELETE '/path/abc?itemId=1&itemId=2&itemId=3') we can conclude that it's something discouraged if you think about a resource as a single document in your entity collection while being good to go if you think about a resource as the entity collection itself.
The second proposed workaround:
About your second proposed workaround (POST '/path/abc' with body: { ids: [1, 2, 3] }), using POST method for deletion could be misleading. The section Section 4.3.3 says about POST:
The POST method requests that the target resource process the representation enclosed in the request according to the resource's own specific semantics. For example, POST is used for the following functions (among others): Providing a block of data, such as the fields entered into an HTML form, to a data-handling process; Posting a message to a bulletin board, newsgroup, mailing list, blog, or similar group of articles; Creating a new resource that has yet to be identified by the origin server; and Appending data to a resource's existing representation(s).
While there's some space for interpretation about "among others" functions for POST, it clearly conflicts with the fact that we have the method DELETE for resources removal, as we can see in Section 4.1:
The DELETE method removes all current representations of the target resource.
So I personally strongly discourage the use of POST to delete resources.
An alternative workaround:
Inspired on your second workaround, we'd suggest one more:
DELETE '/path/abc' with body: { ids: [1, 2, 3] }
It's almost the same as proposed in the workaround two but instead using the correct HTTP method for deletion. Here, we arrive to the confusion about using an entity body in a DELETE request. There are many people out there stating that it isn't valid, but let's stick with the Section 4.3.5 of the specification:
A payload within a DELETE request message has no defined semantics; sending a payload body on a DELETE request might cause some existing implementations to reject the request.
So, we can conclude that the specification doesn't prevent DELETE from having a body payload. Unfortunately some existing implementations could reject the request... But how is this affecting us today?
It's hard to be 100% sure, but a modern request made with fetch just doesn't allow body for GET and HEAD. It's what the Fetch Standard states at Section 5.3 on Item 34:
If either body exists and is non-null or inputBody is non-null, and request’s method is GET or HEAD, then throw a TypeError.
And we can confirm it's implemented in the same way for the fetch pollyfill at line 342.
Final thoughts:
Since the alternative workaround with DELETE and a body payload is let viable by the HTTP specification and is supported by all modern browsers with fetch and since IE10 with the polyfill, I recommend this way to do batch deletes in a valid and full working way.
It's important to understand that the HTTP methods operate in the domain of "transferring documents across a network", and not in your own custom domain.
Your resource model is not your domain model is not your data model.
Alternative spelling: the REST API is a facade to make your domain look like a web site.
Behind the facade, the implementation can do what it likes, subject to the consideration that if the implementation does not comply with the semantics described by the messages, then it (and not the client) are responsible for any damages caused by the discrepancy.
DELETE /path/abc?itemId=1&itemId=2&itemId=3
So that HTTP request says specifically "Apply the delete semantics to the document described by /path/abc?itemId=1&itemId=2&itemId=3". The fact that this document is a composite of three different items in your durable store, that each need to be removed independently, is an implementation details. Part of the point of REST is that clients are insulated from precisely this sort of knowledge.
However, and I feel like this is where many people get lost, the metadata returned by the response to that delete request tells the client nothing about resources with different identifiers.
As far as the client is concerned, /path/abc is a distinct identifier from /path/abc?itemId=1&itemId=2&itemId=3. So if the client did a GET of /path/abc, and received a representation that includes itemIds 1, 2, 3; and then submits the delete you describe, it will still have within its own cache the representation that includes /path/abc after the delete succeeds.
This may, or may not, be what you want. If you are doing REST (via HTTP), it's the sort of thing you ought to be thinking about in your design.
POST /path/abc
some-useful-payload
This method tells the client that we are making some (possibly unsafe) change to /path/abc, and if it succeeds then the previous representation needs to be invalidated. The client should repeat its earlier GET /path/abc request to refresh its prior representation rather than using any earlier invalidated copy.
But as before, it doesn't affect the cached copies of other resources
/path/abc/1
/path/abc/2
/path/abc/3
All of these are still going to be sitting there in the cache, even though they have been "deleted".
To be completely fair, a lot of people don't care, because they aren't thinking about clients caching the data they get from the web server. And you can add metadata to the responses sent by the web server to communicate to the client (and intermediate components) that the representations don't support caching, or that the results can be cached but they must be revalidated with each use.
Again: Your resource model is not your domain model is not your data model. A REST API is a different way of thinking about what's going on, and the REST architectural style is tuned to solve a particular problem, and therefore may not be a good fit for the simpler problem you are trying to solve.
That doesn’t mean that I think everyone should design their own systems according to the REST architectural style. REST is intended for long-lived network-based applications that span multiple organizations. If you don’t see a need for the constraints, then don’t use them. That’s fine with me as long as you don’t call the result a REST API. I have no problem with systems that are true to their own architectural style. -- Fielding, 2008

Correct URI for REST calls to create & delete relationship between two entities

I need to create and delete relationships between two different entities through REST calls.
Let's say user A (the current user) is going to follow or un-follow user B. The existence of a follow relationship is denoted by the presense or absence of the Follow relationship entity (Follow(B, A) means that A follows B).
Should the calls be:
POST /api/follow/{user-b-id} // to follow
and
DELETE /api/follow/{user-b-id} // to un-follow
where the identity of user A is deduced from the token sent along to authenticate the call.
Or should they be based on the action being carried out:
POST /api/follow/{user-b-id} // to follow
and
POST /api/unfollow/{user-b-id} // to un-follow
I have doubts about which methods (POST, PUT, DELETE etc.) to use and whether the URIs should reference the action (verb?) being carried out. Since I am re-designing an API, I want to get as close to "correct" (yes, I do realize that's a little subjective) REST API design as makes sense for my project.
Correct URI for REST calls to create & delete relationship between two entities
REST doesn't care what spelling you use for your URI; /182b2559-5772-40fd-af84-297e3a4b4bcb is a perfectly find URI as far as REST is concerned. The constraints on spelling don't come from REST, but instead whatever the local coding standard is.
A common standard is to consider a collection resource that includes items; such that adding an item resource to a collection is modeled by sending a message to the collection resource, and removing the item resource is modeled by sending a message to the item resource. The Atom Publishing Protocol, for instance, works this way - a POST to a collection resource adds a new entry, a DELETE to the item resource removes the entry.
Following this approach, the usual guideline would be that the collection resource is named for the collection, with the item resources subordinate to it.
// Follow
POST /api/relationships
// Unfollow
DELETE /api/relationships/{id}
id here might be user-b-id or it might be something else; one of the core ideas in REST is that the server is the authority for its URI space; the server may embed information into the URI, at it's own discretion and for its own exclusive use. Consumers are expected to treat the identifiers as opaque units.
I have doubts about which methods (POST, PUT, DELETE etc.) to use and whether the URIs should reference the action (verb?) being carried out.
It's sometimes helpful to keep in mind that the world wide web has been explosively successful even though the primary media type in use (HTML) supports only GET and POST natively.
Technically, you can use POST for everything. The HTTP uniform interface gives you carte blanche.
PUT, DELETE, PATCH can all be considered specializations of POST: unsafe methods with additional semantics. PUT suggests idempotent replace semantics, DELETE suggests remove, PATCH for an all or nothing update.
Referencing the action isn't wrong (REST doesn't care about spelling, remember), but it does suggest that you are thinking about the effects of the messages rather than about the resources that the messages are acting upon.
JSON Patch may be a useful example to keep in mind. The operations (add, remove, replace, and so on) are encoded into the patch document, the URI specifies which resource should be modified with those operations.
Jim Webber expressed the idea this way - HTTP is a document transfer application. Useful work is a side effect of exchanging documents. The URI identify the documents that are used to navigate your integration protocol.
So if you need consistent, human readable spellings for your URI, one way to achieve this is by articulating that protocol and the documents from which it is composed.
Would it be correct to say that PUT is for replacing the entire entity (resource) and PATCH if for modifying a sub-set of the entity's (resource's) properties?
Not quite. PUT means the message-body of the request is a replacement representation of the resource. PATCH means the message-body of the request is a patch document.
There's nothing in the semantics that prevents you from using PUT to change a single element in a large document, or PATCH to completely replace a representation.
But a client might prefer PATCH to PUT because the patch document is much smaller than the replacement representation. Or it might prefer PUT to PATCH because the message transport is unreliable, and the idempotent semantics of PUT make retry easier.
The right decision also depends on the way other resources are mapped in the project. Same style is better, however if there's no preference, the following could have the advantage of being easier to implement and remember
POST /api/follow/{user-b-id} // to follow
and
POST /api/unfollow/{user-b-id} // to un-follow
I would say, use the delete verb if your are passing in the id of the relationship/link/follow from a to b. This way, it is fairly explicit your route is doing. It is accepting an id of some object and deleting it.
However, in your example, you are passing in the id of the other user, then you have to do some logic to find the relationship/link/follow object between the two and delete it. In my mind, this is more of a post than a delete because of the additional work you have to do. Regardless, it seems fairly subjective as to which one is "right",

Correct HTTP request method for nullipotent action that takes binary data

Consider a web API method that has no side effects, but which takes binary data as a parameter. An example would be a method that tells the user whether or not their image is photoshopped, but does not permanently store the image or the result on its servers.
Should such a method be a GET or a POST?
GET doesn't seem to have a recommended way of sending data outside of URL parameters, but the behavior of the method implies a GET, which according to the HTTP spec is for safe, stateless responses. This becomes particularly constraining under the semantics of REST, which imply that POST methods create a new object on the server.
This becomes particularly constraining under the semantics of REST, which imply that POST methods create a new object on the server.
While a POST request means that the entity sent will be treated "as a new subordinate of the resource identified by the Request-URI", there is no requirement that this result in the creation of a new permanent object or that any such new object be identified by a URI (so no new object as far as the client knows). An object can be transient, representing the results of e.g. "Providing a block of data, such as the result of submitting a form, to a data-handling process" and not persisting after the entity representing that object has been sent.
While this means that a POST can create a new resource, and is certainly the best way to do so when it is the server that will give that new resource its URI (with PUT being the more appropriate method when the client dictates the new URI) it is can also be used for cases that delete objects (though again if it's a deletion of a single* resource identifiable by a URI then DELETE is far more appropriate), both create and delete objects, change multiple objects, it can mean that your kitchen light turns on but that the response is the same whether that worked or failed because the communication from the webserver to the kitchen light doesn't allow for feedback about success. It really can do anything at all.
But, your instincts are good in wanting this to be a GET: While the looseness of POST means we can make a case for it for just about every request (as done by approaches that use HTTP for an RPC-like protocol, essentially treating HTTP as if it was a transport protocol), this is inelegant in theory, inefficient in practice and clumsy in definition. You have an idempotent function that depends on solely on what the client is interested in, and that maps most obviously the GET in a few ways.
If we could fit everything in a URI then GET would be easy. E.g we can define a simple integer addition with something like http://example.net/addInts?x=1;y=2 representing the addition of 71 and 2 and hence being a permanent immutable resource representing the number 3 (since the results of GET can vary with changes to a resource over time, but this resource never changes) and then use a mechanism like HTML's <form> or javascript to allow the server to inform the client as to how to construct the URIs for other numbers (to maintain the HATEOS and/or COD constraints). Simples!
Your problem here is that you do not have input that can be represented as concisely as the numbers 1 and 2 can above. In theory you could do something like http://example.net/photoshoppedCheck?image=… and hence create a URI that represents the resource of the results of the check. This URI will though will have 4 characters for every 3 bytes in the image. While there's no absolute limit on URI length both the theory and the practice allow this to fail (in theory HTTP allows for proxies and servers to set a limit on URI length, and in practice they do).
An argument could be made for using GET and sending a request body the same way as you would with a POST, and some webservers will even allow you to do this. However, GET is defined as returning an entity describing the resource identified in the URI with headers restricting how that entity does that describing: Since the request body is not part of that definition it must be ignored by your code! If you were tempted to bend this rule then you must consider that:
Some webservers will refuse the request or strip the body, so you may not be able to.
If your webserver does allow it, the fact that its not specified means you can't be sure an upgrade won't "fix" this and so break your code.
Some proxies will refuse or strip the request.
Some client libraries will most certainly refuse to allow developers to send a request body along with a GET.
So it's a no-no in both theory and practice.
About the only other approach we could do apart from POST is to have a URI that we consider as representing an image that was not photoshopped. Hence if you GET that you get an entity describing the image (obviously it could be the actual image, though it could also be something else if we stretch the concept of content-negotiation) and then PUT will check the image and if its deemed to not be photoshopped it responds with the same image and a 200 or just a 204 while if it is deemed to be photoshopped it responds with a 400 because we've tried to PUT a photoshopped image as a resource that can only be a non-photoshopped image. Because we respond immediately, there's no race-condition with simultaneous requests.
Frankly, this would be darn-right horrible. While I think I've made a case for it by the letter of the specs, it's just nasty: REST is meant to help us design clear APIs, not obtuse APIs we can offer a too-clever-for-its-own-good justification of.
No, in all the way to go here is to POST the image to a fixed URI which then returns a simple entity describing the analysis.
It's perfectly justifiable as REST (the POST creates a transient object based on that image, and then responds with an entity describing that object, and then that object disappears again). It's straight-forward. It's about as efficient as it could be (we can't do any HTTP caching† but most of the network delay is going to be on the upload rather than the download anyway). It also fits into the general use-case of "process something" that POST was first invented for. (Remember that first there was HTTP, then REST described why it worked so well, and then HTTP was refined to better play to those strengths).
In all, while the classic mistake that moves a web application away from REST is to abuse POST into doing absolutely everything when GET, PUT and DELETE (and perhaps the WebDAV methods) would be superior, don't be afraid to use its power when those don't meet the bill, and don't think that the "new subordinate of the resource" has to mean a full long-lived resource.
*Note that a "single" resource here might be composed of several resources that may have their own URIs, so it can be easy to have a single DELETE that deletes multiple objects, but if deleting X deletes A, B & C then it better be obvious that you can't have A, B or C if you don't have X or your API is not going to be understandable. Generally this comes down to what is being modelled, and how obvious it is that one thing depends on another.
†Strictly speaking we can, as we're allowed to send cache headers indicating that sending an identical entity to the same URI will have the same results, but there's no general-purpose web-software that will do this and your custom client can just "remember" the opinion about a given image itself anyway.
It's a difficult one. Like with many other scenarios there is no absolutely correct way of doing it. You have to try to interpret RESTful principles in terms of the limitations of the semantics of HTTP. (Incidentally, I don't think it's right to think of REST having semantics, REST is an architectural style which is commonly used with HTTP services, but can be used for any type of interface.)
I've faced a similar situation in my current project. We chose to use a POST but with the response code being a 200 (OK) rather than the 201 (Resource Created) usually returned by RESTful Web APIs.