How can I generate a unique, small, random, and user-friendly key? - encoding

A few months back I was tasked with implementing a unique and random code for our web application. The code would have to be user friendly and as small as possible, but still be essentially random (so users couldn't easily predict the next code in the sequence).
It ended up generating values that looked something like this:
Af3nT5Xf2
Unfortunately, I was never satisfied with the implementation. Guid's were out of the question, they were simply too big and difficult for users to type in. I was hoping for something more along the lines of 4 or 5 characters/digits, but our particular implementation would generate noticeably patterned sequences if we encoded to less than 9 characters.
Here's what we ended up doing:
We pulled a unique sequential 32bit id from the database. We then inserted it into the center bits of a 64bit RANDOM integer. We created a lookup table of easily typed and recognized characters (A-Z, a-z, 2-9 skipping easily confused characters such as L,l,1,O,0, etc.). Finally, we used that lookup table to base-54 encode the 64-bit integer. The high bits were random, the low bits were random, but the center bits were sequential.
The final result was a code that was much smaller than a guid and looked random, even though it absolutely wasn't.
I was never satisfied with this particular implementation. What would you guys have done?

Here's how I would do it.
I'd obtain a list of common English words with usage frequency and some grammatical information (like is it a noun or a verb?). I think you can look around the intertubes for some copy. Firefox is open-source and it has a spellchecker... so it must be obtainable somehow.
Then I'd run a filter on it so obscure words are removed and that words which are too long are excluded.
Then my generation algorithm would pick 2 words from the list and concatenate them and add a random 3 digits number.
I can also randomize word selection pattern between verb/nouns like
eatCake778
pickBasket524
rideFlyer113
etc..
the case needn't be camel casing, you can randomize that as well. You can also randomize the placement of the number and the verb/noun.
And since that's a lot of randomizing, Jeff's The Danger of Naïveté is a must-read. Also make sure to study dictionary attacks well in advance.
And after I'd implemented it, I'd run a test to make sure that my algorithms should never collide. If the collision rate was high, then I'd play with the parameters (amount of nouns used, amount of verbs used, length of random number, total number of words, different kinds of casings etc.)

In .NET you can use the RNGCryptoServiceProvider method GetBytes() which will "fill an array of bytes with a cryptographically strong sequence of random values" (from ms documentation).
byte[] randomBytes = new byte[4];
RNGCryptoServiceProvider rng = new RNGCryptoServiceProvider();
rng.GetBytes(randomBytes);
You can increase the lengh of the byte array and pluck out the character values you want to allow.

In C#, I have used the 'System.IO.Path.GetRandomFileName() : String' method... but I was generating salt for debug file names. This method returns stuff that looks like your first example, except with a random '.xyz' file extension too.
If you're in .NET and just want a simpler (but not 'nicer' looking) solution, I would say this is it... you could remove the random file extension if you like.

At the time of this writing, this question's title is:
How can I generate a unique, small, random, and user-friendly key?
To that, I should note that it's not possible in general to create a random value that's also unique, at least if each random value is generated independently of any other. In addition, there are many things you should ask yourself if you want to generate unique identifiers (which come from my section on unique random identifiers):
Can the application easily check identifiers for uniqueness within the desired scope and range (e.g., check whether a file or database record with that identifier already exists)?
Can the application tolerate the risk of generating the same identifier for different resources?
Do identifiers have to be hard to guess, be simply "random-looking", or be neither?
Do identifiers have to be typed in or otherwise relayed by end users?
Is the resource an identifier identifies available to anyone who knows that identifier (even without being logged in or authorized in some way)?
Do identifiers have to be memorable?
In your case, you have several conflicting goals: You want identifiers that are—
unique,
easy to type by end users (including small), and
hard to guess (including random).
Important points you don't mention in the question include:
How will the key be used?
Are other users allowed to access the resource identified by the key, whenever they know the key? If not, then additional access control or a longer key length will be necessary.
Can your application tolerate the risk of duplicate keys? If so, then the keys can be completely randomly generated (such as by a cryptographic RNG). If not, then your goal will be harder to achieve, especially for keys intended for security purposes.
Note that I don't go into the issue of formatting a unique value into a "user-friendly key". There are many ways to do so, and they all come down to mapping unique values one-to-one with "user-friendly keys" — if the input value was unique, the "user-friendly key" will likewise be unique.

If by user friendly, you mean that a user could type the answer in then I think you would want to look in a different direction. I've seen and done implementations for initial random passwords that pick random words and numbers as an easier and less error prone string.
If though you're looking for a way to encode a random code in the URL string which is an issue I've dealt with for awhile then I what I have done is use 64-bit encoded GUIDs.

You could load your list of words as chakrit suggested into a data table or xml file with a unique sequential key. When getting your random word, use a random number generator to determine what words to fetch by their key. If you concatenate 2 of them, I don't think you need to include the numbers in the string unless "true randomness" is part of the goal.

Related

Picking a check digit algorithm

I am generating random OTP-style strings that serve as a short-term identifier to link two otherwise unrelated systems (which have authentication at each end). These need to be read and re-entered by users, so in order to reduce the error rate and reduce the opportunities for forgery, I'd like to make one of the digits a check digit. At present my random string conforms to the pattern (removing I and O to avoid confusion):
^[ABCDEFGHJKLMNPQRSTUVWXYZ][0-9]{4}$
I want to append one extra decimal digit for the check. So far I've implemented this as a BLAKE2 hash (from libsodium) that's converted to decimal and truncated to 1 char. This gives only 10 possibilities for the check digit, which isn't much. My primary objective is to detect single character errors in the input.
This approach kind of works, but it seems that one digit is not enough to detect single char errors, and undetected errors are quite easy to find, for example K37705 and K36705 are both considered valid.
I do not have a time value baked into this OTP; instead it's purely random and I'm relying on keeping a record of the OTPs that have been generated recently for each user, which are deleted periodically, and I'm reducing opportunities for brute-forcing by rate and attempt-count limiting.
I'm guessing that BLAKE2 isn't a good choice here, but given there are only 10 possibilities for the result, I don't know that others will be better. What would be a better algorithm/approach to use?
Frame challenge
Why do you need a check digit?
It doesn't improve security, and a five digits is trivial for most humans to get correct. Check if server side and return an error message if it's wrong.
Normal TOTP tokens are commonly 6 digits, and actors such as google has determined that people in general manage to get them orrect.

Algorithm to generate a user unique, 6-character confirmation code?

I'd like to be able to create an algorithm that generates a 6 character confirmation code (e.g. A1JU2Z) that will be unique for a given (user, code) pair. The reason is, I'd like to keep the code at 6 characters, but using a trimmed set of alphanumerics (to avoid confusion with 1 and I, etc) only allows for ~300 million codes before collisions occur. Sure I may never need 300 million codes, but if I do, it will be a huge pain to go back and fix this.
So is there a way to utilize the user ... say their username, to generic unique codes such that if the same user wants to generate another code, its guaranteed that it is unique for them? (This is of course assuming a single user doesn't generate over 300 mill codes)
Thanks!
If the ID is unique only to the current user, you can just generate each character of the ID randomly. As long as the user is not expected to generate a large number of such IDs, you will have reasonable chance of not generating the same ID more than once (you need to do some math to get exact numbers for the expected chance of collision as the number of generated ID grow).
If you must not have collision at all cost, you need to either keep all previously generated IDs and do a comparison for the new one, or keep the count of the generated IDs (this requires a scheme where the ID generation is deterministic based on the count, but also unique -- a very simple case would be {ID=count; ++count;})
I think you can use a simple password generator like this : http://www.webtoolkit.info/php-random-password-generator.html
in combination with a check algorithm to be sure it is not already used.
$pass=generate_password();
$found=find_password($pass);
while($found){
$pass=generate_password();
$found=find_password($pass);
}
save_password($user,$code,$pass);
generate_password() is the function refered in the link.
find_password() is a function you have to write to check already generated codes in a database.
save_password() is a function you have to write to store the generated code in a database.
The code is in PHP, but the logic is here.
The password generator in the link is easy to understand, you can get 6 chars long, with the character rules you want.

How Does The Google URL Shortener Generate A 5 Digit Hash Without Collisions

How can the Google URL shortener generate a unique hash with five characters without collisions. Seems like there are bound to be collisions, where different urls generate the same hash.
stackoverflow.com => http://goo.gl/LQysz
What's also interesting, is the same URL, generates a completely different hash each time:
stackoverflow.com => http://goo.gl/Dl7sz
So, doing some math, using lower-case characters, upper-case characters, and digits, the total number of combinations are 62^5 = 916,132,832 clearly collisions bound to happen.
How does Google do this?
They have a database which tracks all previously generated URLs and the longer URL that each of those maps to. Easy to make sure that newly generated URLs don't already exist in that table. A little tricky to scale out (they surely have multiple servers so each one needs to be assigned a bucket of values from which it can give out to users). If they ever reach the point of having generated 916,132,832 URLs, they'll just add another character.
They have a hash table with hash to url.
Count the number of rows in that table and encrypt it with a stream cipher then encode with base62.
Using a stream cipher instead of a hash will give you a short pseudo random output that doesn't collide with any previous output so you don't need to check the table.
It keeps track of previously used long URLs. This means that, when someone goes to create a short URL, if the place they are pointing to already has a short URL, it will just give them the pre-existing short URL.
Actually, it would be inefficient to have a system dedicated to creating 'hashes' based on a given set of data. Rather, the short URL is simply a random set of characters which has already been identified as ten digits, plus 26 lowercase letters, plus 26 uppercase letters = 916132832 permutations (not combinations). Random short URLs is the most efficient way to make it work, and that is why they are always different (though I suppose there could be some other component in the algorithm like the time of day, but I don't think it's worth it....there's no point in making it that complex; spending all of that processing power just to make a silly 5 character string which any monkey could do by pressing a button the right way on a permutation calculator).

Pretty URLs with hashes (md5)

In our web application we display a list of pulses, but for linking and such we make every pulse uniquely available. In our Couch DB we are giving every pulse a unique id by md5'ing their unique attributes. I.E.: www.foo.com/bar/
Though these md5 sums are extremely long and make for ugly URLs. Is there another way to hash the attributes that will require less characters but still guarantee uniqueness.
Thanks a lot
Instead of creating an ugly md5 you could use a method like this to create a random string of a given length containing certain characters and insert this into a row next to the md5 row that is used for retrieving the data from the database using the 'pretty url' string. One thing to think about would be to take out the vowels from the possible characters as with them, you could end up with bad words :) Also, make sure it does not already exist in the database of course, and if it does just create another one... that won't happen very often though.

How can I auto-generate unique fake names for users?

We would like to give each of users an alias so that we can refer to them in discussions while protecting their identity. These aliases should be unique.
The easy way would be to simply use a SERIAL column, but ints aren't memorable. We would like to use real people names so that we can remember the aliases.
The other easy way would be to find a list of first names somewhere, number them, and use a SERIAL to fetch names from the list. When the list runs out, add more names.
But is there some clever way to map ints to names?
We currently have about 2,000 users and are growing, but I doubt we'll ever become Google.
It may sound crazy. But there is an algorithm used in game programming to create meaningless but phonetically unique names like Alveolar, Bilabial, Glottal, Palatal, Velar.
Pick a random name from the Census Bureau's names file.
Have you tried any Hash functions? I am not sure whether they are available in Postgres. But yeah, one way to do is let the internal hash function take care. They will output unique IDs.
Back in "the day" Compuserve (or was it AOL?) used to give out temporary, initial passwords by having two lists of words and taking one word from each list and putting it together, so you would get something like EasyTomato or whatever. Perhaps something like that would work for your user base. If each word list has 256 characters, that's 65535 unique combinations (and notice how easily you can pick the combination by just incrementing a 16-bit integer).
EDIT: Well don't do a straight increment of the integer after all, or the first 256 people will all get the same first word, but the basic idea is still sound. Pick a random, not-yet-used 16-bit number. High 8 bits are your index into the first word list, low 8 bits are your index into the second word list.