What's the best way to iterate through columns of a matrix? - matlab

I want to apply a function to all columns in a matrix with MATLAB. For example, I'd like to be able to call smooth on every column of a matrix, instead of having smooth treat the matrix as a vector (which is the default behaviour if you call smooth(matrix)).
I'm sure there must be a more idiomatic way to do this, but I can't find it, so I've defined a map_column function:
function result = map_column(m, func)
result = m;
for col = 1:size(m,2)
result(:,col) = func(m(:,col));
end
end
which I can call with:
smoothed = map_column(input, #(c) (smooth(c, 9)));
Is there anything wrong with this code? How could I improve it?

The MATLAB "for" statement actually loops over the columns of whatever's supplied - normally, this just results in a sequence of scalars since the vector passed into for (as in your example above) is a row vector. This means that you can rewrite the above code like this:
function result = map_column(m, func)
result = [];
for m_col = m
result = horzcat(result, func(m_col));
end
If func does not return a column vector, then you can add something like
f = func(m_col);
result = horzcat(result, f(:));
to force it into a column.

Your solution is fine.
Note that horizcat exacts a substantial performance penalty for large matrices. It makes the code be O(N^2) instead of O(N). For a 100x10,000 matrix, your implementation takes 2.6s on my machine, the horizcat one takes 64.5s. For a 100x5000 matrix, the horizcat implementation takes 15.7s.
If you wanted, you could generalize your function a little and make it be able to iterate over the final dimension or even over arbitrary dimensions (not just columns).

Maybe you could always transform the matrix with the ' operator and then transform the result back.
smoothed = smooth(input', 9)';
That at least works with the fft function.

A way to cause an implicit loop across the columns of a matrix is to use cellfun. That is, you must first convert the matrix to a cell array, each cell will hold one column. Then call cellfun. For example:
A = randn(10,5);
See that here I've computed the standard deviation for each column.
cellfun(#std,mat2cell(A,size(A,1),ones(1,size(A,2))))
ans =
0.78681 1.1473 0.89789 0.66635 1.3482
Of course, many functions in MATLAB are already set up to work on rows or columns of an array as the user indicates. This is true of std of course, but this is a convenient way to test that cellfun worked successfully.
std(A,[],1)
ans =
0.78681 1.1473 0.89789 0.66635 1.3482

Don't forget to preallocate the result matrix if you are dealing with large matrices. Otherwise your CPU will spend lots of cycles repeatedly re-allocating the matrix every time it adds a new row/column.

If this is a common use-case for your function, it would perhaps be a good idea to make the function iterate through the columns automatically if the input is not a vector.
This doesn't exactly solve your problem but it would simplify the functions' usage. In that case, the output should be a matrix, too.
You can also transform the matrix to one long column by using m(:,:) = m(:). However, it depends on your function if this would make sense.

Related

Vectorization of function in Matlab

I'm trying to vectorize one function in Matlab, but I have a problem with assigning values.
function [val] = clenshaw(coeffs,x)
b=zeros(1,length(coeffs)+2);
for k=length(coeffs):-1:2
b(k)=coeffs(k)-b(k+2)+2*b(k+1).*x;
end
val=coeffs(1)-b(3)+b(2).*x;
The purpose of this function is to use Clenshaw's algorithm to compute a value of one polynomial with coefficients "coeffs" at point x.
It work fine when x is a single value, but I'd like it to work with vector of arguments too.
When I try to pass a vector I get an error:
Unable to perform assignment because the left
and right sides have a different number of
elements.
Error in clenshaw (line 7)
b(k)=coeffs(k)-b(k+2)+2*b(k+1).*x;
I understand that there is a problem, because I'm trying to assign vector to a scalar variable b(k).
I tried making b a matrix instead of a vector, however I still cannot get the return output I'd like to have which would be a vector of values of this function at points from vector x.
Thank you for helping and sorry if something isn't entirely clear, because English is not my native language.
The vectorized version of your function looks like this:
function [val] = clenshaw(coeffs,x)
b=zeros(length(x),length(coeffs)+2);
for k=length(coeffs):-1:2
b(:,k)=coeffs(k)-b(:,k+2)+2*b(:,k+1).*transpose(x);
end
val=coeffs(1)-b(:,3)+b(:,2).*transpose(x);
end
b needs to be a matrix. In your loop, you have to perform every operation per row of b. So you need to write b(:,k) instead of b(k). Since b(:,k) is a vector and not a scalar, you also have to be careful with the dimensions when using the .* operator. To get the correct results, you need to transpose x. The same goes for the calculation of val. If you don't like the transposition, just swap the rows and cols of b and you get this:
function [val] = clenshaw(coeffs,x)
b=zeros(length(coeffs)+2, length(x));
for k=length(coeffs):-1:2
b(k,:)=coeffs(k)-b(k+2,:)+2*b(k+1,:).*x;
end
val=coeffs(1)-b(3,:)+b(2,:).*x;
end
However, the first version returns a column vector and the second a row vector. So you might need to transpose the result if the vector type is important.

Construct cell which contains different sizes of matrices of different dimension

My task now is want to construct a cell C which contain matrices which first dimensions are contained in a vector
n = [12 23 54].
While their second dimensions are fixed with
r = 3.
So, I want the cell C = {rand(12,3), rand(23,3), rand(54,3)}.
I know for-loop can serve my purpose as:
C=cell(3,1) % pre-allocation
for i = 1 : length(n)
C{i} = rand(n(i),r);
end
May I know if I can do it smarter without using a for loop in Matlab? Thank you
There's really no harm in using a for loop in this particular scenario (and in most cases where the only alternative is cellfun or arrayfun) as it is easier for MATLAB's JIT compiler to handle, but if you're really averse to a for loop you can use arrayfun combined within non-uniform output to give you the result you want.
C = arrayfun(#(x)rand(x, r), n, 'UniformOutput', false);
This may actually be slower than the for loop for the reasons mentioned above. But hey, it's one line so that's all that matters!
for and while loops have their place, even in Matlab. You've probably been told to avoid them because vectorized operations are so much faster when you're iterating over the rows, columns or other dimensions of a packed numeric array. But with higher-level constructs, like cell arrays, there's often no advantage (and a readability penalty) to trying to do things all in neat quasi-vectorized statements. Your existing solution is probably the best approach.
A shorter alternative, just for fun:
C = mat2cell(rand(sum(n),r), n,r)';
But a plain loop is almost certainly fastest in this case, because mat2cell uses a loop, as well as copious checks on its inputs.

bsxfun() Invalid output dimensions

I have a function that takes upto seven arguments and returns a row vector. The first three arguments are vectors (column, column, row) and the remaining four are optional scalars.
I want to use bsxfun() to apply the function to a vector of its last argument. Below is my attempt to do that.
o = #(m,pulse,N0,samples_per_pulse,sample_select,filter,channel_cutoff) ELE452Functions.EvaluateBER(m,pulse,N0,samples_per_pulse,sample_select,filter,channel_cutoff);
oo = #(m,pulse,N0,samples_per_pulse,sample_select,filter,channel_cutoff) bsxfun(#(N0,channel_cutoff) o(m,pulse,N0,samples_per_pulse,sample_select,filter,channel_cutoff), N0' , channel_cutoff);
when I try to call the function with a vector, oo(m,pulse,N0,1,1,1,[0.5 0.2]); for example, I get this error:
Error using bsxfun
Invalid output dimensions.
I am not experienced in using bsxfun and I tried to follow the documentation.
Update:
May be this is a clearer way to ask my question:
I want to use bsxfun to rewrite (improve) the code below with out a loop.
for i=1:length(channel_normalized_cuttoffs)
BER_LPchannel(i,:) = ELE452Functions.EvaluateBER(m,pulse,N0,1,1,1,channel_normalized_cuttoffs(i));
end
The idea behind bsxfun is to evaluate a certain function for all possible combinations of two elements (b in bsxfun stands for binary), each coming from one of the arrays. (NB: This is valid if you use it with a row and a column vector. But bsxfun can also do more.)
What you want to achieve is simply: For all entries of a single array, evaluate a function.
So bsxfun is just not the correct choice here.
You could use arrayfun instead, but this still may not perform a lot better than your original for loop, as it looks like the Matlab JIT Compiler would be able to optimize most of it, considering it's simplicity.
As I don't have the code of your function, I'm not able to test it, but your solution might look a lot like this:
evalBER = #(CNcutoffi) ELE452Functions.EvaluateBER(m,pulse,N0,1,1,1,CNcutoffi);
BER_LPchannel = arrayfun(evalBER, channel_normalized_cuttoffs, 'UniformOutput', false)

Replace certain elements of matrix with NaN (MATLAB)

I have a vector, A.
A=[3,4,5,2,2,4;2,3,4,5,3,4;2,4,3,2,3,1;1,2,3,2,3,4]
Some of the records in A must be replaced by NaN values, as they are inaccurate.
I have created vector rowid, which records the last value that must be kept after which the existing values must be swapped to NaN.
rowid=[4,5,4,3]
So the vector I wish to create, B, would look as follows:
B=[3,4,5,2,NaN,NaN;2,3,4,5,3,NaN;2,4,3,2,NaN,NaN;1,2,3,NaN,NaN,NaN]
I am at a loss as to how to do this. I have tried to use
A(:,rowid:end)
to start selecting out the data from vector A. I am expecting to be able to use sub2ind or some sort of idx to do this, possibly an if loop, but I don't know where to start and cannot find an appropriate similar question to base my thoughts on!
I would very much appreciate any tips/pointers, many thanks
If you are not yet an expert of matlab, I would stick to simple for-loops for now:
B = A;
for i=1:length(rowid)
B(i, rowid(i)+1:end) = NaN;
end
It is always a sport to write this as a one-liner (see Mohsen's answer), but in many cases an explicit for-loop is much clearer.
A compact one is:
B = A;
B(bsxfun(#lt, rowid.', 1:size(A,2)))=NaN;

Addressing multiple ranges via indices in a vector

To begin, this problem is easily solvable with a for-loop. However, I'm trying to force/teach myself to think vector-wise to take advantage of what Matlab does best.
Simplified, here is the problem explanation:
I have a vector with data in it.
I have a 2xN array of start/stop indices that represent ranges of interesting data in the vector.
I want to perform calculations on each of those ranges, resulting in a number (N results, corresponding to each start/stop range.)
In code, here's a pseudoexample of what I'd like to have at the end:
A = 1:10000;
startIndicies = [5 100 1000];
stopIndicies = [10 200 5000];
...
calculatedResults = [func(A(5:10)) func(A(100:200)) func(A(1000:5000))]
The length of A, and of the start/stop index array is variable.
Like I said, I can easily solve this with a for loop. However since could be used with a large data set, I'd like to know if there's a good solution without a for loop.
Here is one possible solution, although, I won't call it a fully vectorized solution, rather a one liner one.
out = cellfun(#(i,j) fun(A(i:j)), num2cell(startIndicies), num2cell(stopIndicies) );
or, if you plan to have homogeneous outputs,
out = arrayfun(#(i,j) fun(A(i:j)), startIndicies, stopIndicies);