Sorry if this has already been asked, I didn't find any obvious match.
I am an SQL beginer learning with sqlite.
Is there a document that specify the per consequence of an API call or an internal documentation.
I'd like to know what is a cost of dropping things, say dropping a table, does it degenerate into freeing each table element rowcolelement or is it just a matter of placing the table on freelist and all space it use are now free.
Thanks in advance
Cheers,
Phi
I was just searching for the best explanations and reasons to build a OLAP Cube from Relational Data. Is that all about performance and query optimization?
It will be great if you can give links or point out best explanations and reasons for building a cube, as we can do all the things from relational database that we can do from cube and cube is faster to show results.Is there any other explanation or reasons?
There are many reasons why you should use a cube for analytical proccessing.
Speed. Olap wharehouses are read only infrastractures providing 10 times faster queries than their oltp counterparts. See wiki
Multiple data integration. On a cube you can easily use multiple data sources and do minimal work with many automated tasks (especially when you use SSIS) to intergrate them on a single analysis system. See elt process
Minimum code. That is, you need not write queries. Even though you can write MDX - the language of the cubes in SSAS, the BI Studio does most of the hard work for you. On a project I am working on, at first we used SSRS to provide reports for the client. The queries were long and hard to make and took days to implement. Their SSAS equivalent reports took us half an hour to make, writing only a few simple queries to trasform some data.
A cube provides reports and drill up-down-through, without the need to write additional queries. The end user can traverse the dimension automatically, as the aggregations are already stored in the warehouse. This helps as the users of the cube need only traverse its dimensions to produce their own reports without the need to write queries.
Is is part of the Bussiness Intelligence. When you make a cube it can be fed to many new technologies and help in the implementation of BI solutions.
I hope this helps.
If you want a top level view, use OLAP. Say you have millions of rows detailing product sales and you want to know your monthly sales totals.
If you want bottom-level detail, use OLTP (e.g. SQL). Say you have millions of rows detailing product sales and want to examine one store's sales on one particular day to find potential fraud.
OLAP is good for big numbers. You wouldn't use it to examine string values, really...
It's bit like asking why using JAVA/C++ when we can do everything with Assembly Language ;-) Building a cube (apart from performance) is giving you the MDX language; this language has higher level concepts than SQL and is better with analytic tasks. Perhaps this question gives more info.
My 2 centavos.
My Data
It's primarily monitoring data, passed in the form of Timestamp: Value, for each monitored value, on each monitored appliance. It's regularly collected over many appliances and many monitored values.
Additionally, it has the quirky feature of many of these data values being derived at the source, with the calculation changing from time to time. This means that my data is effectively versioned, and I need to be able to simply call up only data from the most recent version of the calculation. Note: This is not versioning where the old values are overwritten. I simply have timestamp cutoffs, beyond which the data changes its meaning.
My Usage
Downstream, I'm going to have various undefined data mining/machine learning uses for the data. It's not really clear yet what those uses are, but it is clear that I will be writing all of the downstream code in Python. Also, we are a very small shop, so I can really only deal with so much complexity in setup, maintenance, and interfacing to downstream applications. We just don't have that many people.
The Choice
I am not allowed to use a SQL RDBMS to store this data, so I have to find the right NoSQL solution. Here's what I've found so far:
Cassandra
Looks totally fine to me, but it seems like some of the major users have moved on. It makes me wonder if it's just not going to be that much of a vibrant ecosystem. This SE post seems to have good things to say: Cassandra time series data
Accumulo
Again, this seems fine, but I'm concerned that this is not a major, actively developed platform. It seems like this would leave me a bit starved for tools and documentation.
MongoDB
I have a, perhaps irrational, intense dislike for the Mongo crowd, and I'm looking for any reason to discard this as a solution. It seems to me like the data model of Mongo is all wrong for things with such a static, regular structure. My data even comes in (and has to stay in) order. That said, everybody and their mother seems to love this thing, so I'm really trying to evaluate its applicability. See this and many other SE posts: What NoSQL DB to use for sparse Time Series like data?
HBase
This is where I'm currently leaning. It seems like the successor to Cassandra with a totally usable approach for my problem. That said, it is a big piece of technology, and I'm concerned about really knowing what it is I'm signing up for, if I choose it.
OpenTSDB
This is basically a time-series specific database, built on top of HBase. Perfect, right? I don't know. I'm trying to figure out what another layer of abstraction buys me.
My Criteria
Open source
Works well with Python
Appropriate for a small team
Very well documented
Has specific features to take advantage of ordered time series data
Helps me solve some of my versioned data problems
So, which NoSQL database actually can help me address my needs? It can be anything, from my list or not. I'm just trying to understand what platform actually has code, not just usage patterns, that support my super specific, well understood needs. I'm not asking which one is best or which one is cooler. I'm trying to understand which technology can most natively store and manipulate this type of data.
Any thoughts?
It sounds like you are describing one of the most common use cases for Cassandra. Time series data in general is often a very good fit for the cassandra data model. More specifically many people store metric/sensor data like you are describing. See:
http://rubyscale.com/blog/2011/03/06/basic-time-series-with-cassandra/
http://www.datastax.com/dev/blog/advanced-time-series-with-cassandra
http://engineering.rockmelt.com/post/17229017779/modeling-time-series-data-on-top-of-cassandra
As far as your concerns with the community I'm not sure what is giving you that impression, but there is quite a large community (see irc, mailing lists) as well as a growing number of cassandra users.
http://www.datastax.com/cassandrausers
Regarding your criteria:
Open source
Yes
Works well with Python
http://pycassa.github.com/pycassa/
Appropriate for a small team
Yes
Very well documented
http://www.datastax.com/docs/1.1/index
Has specific features to take advantage of ordered time series data
See above links
Helps me solve some of my versioned data problems
If I understand your description correctly you could solve this multiple ways. You could start writing a new row when the version changes. Alternatively you could use composite columns to store the version along with the timestamp/value pair.
I'll also note that Accumulo, HBase, and Cassandra all have essentially the same data model. You will still find small differences around the data model in regards to specific features that each database offers, but the basics will be the same.
The bigger difference between the three will be the architecture of the system. Cassandra takes its architecture from Amazon's Dynamo. Every server in the cluster is the same and it is quite simple to setup. HBase and Accumulo or more direct clones of BigTable. These have more moving parts and will require more setup/types of servers. For example, setting up HDFS, Zookeeper, and HBase/Accumulo specific server types.
Disclaimer: I work for DataStax (we work with Cassandra)
I only have experience in Cassandra and MongoDB but my experience might add something.
So your basically doing time based metrics?
Ok if I understand right you use the timestamp as a versioning mechanism so that you query per a certain timestamp, say to get the latest calculation used you go based on the metric ID or whatever and get ts DESC and take off the first row?
It sounds like a versioned key value store at times.
With this in mind I probably would not recommend either of the two I have used.
Cassandra is too rigid and it's too heirachal, too based around how you query to the point where you can only make one pivot of graph data from (I presume you would wanna graph these metrics) the columfamily which is crazy, hence why I dropped it. As for searching (which Facebook use it for, and only that) it's not that impressive either.
MongoDB, well I love MongoDB and I am an elite of the user group and it could work here if you didn't use a key value storage policy but at the end of the day if your mind is not set and you don't like the tech then let me be the very first to say: don't use it! You will be no good at a tech that you don't like so stay away from it.
Though I would picture this happening in Mongo much like:
{
_id: ObjectID(),
metricId: 'AvailableMessagesInQueue',
formula: '4+5/10.01',
result: NaN
ts: ISODate()
}
And you query for the latest version of your calculation by:
var results = db.metrics.find({ 'metricId': 'AvailableMessagesInQueue' }).sort({ ts: -1 });
var latest = results.getNext();
Which would output the doc structure you see above. Without knowing more of exactly how you wish to query and the general servera and app scenario etc thats the best I can come up with.
I fond this thread on HBase though: http://mail-archives.apache.org/mod_mbox/hbase-user/201011.mbox/%3C5A76F6CE309AD049AAF9A039A39242820F0C20E5#sc-mbx04.TheFacebook.com%3E
Which might be of interest, it seems to support the argument that HBase is a good time based key value store.
I have not personally used HBase so do not take anything I say about it seriously....
I hope I have added something, if not you could try narrowing your criteria so we can answer more dedicated questions.
Hope it helps a little,
Not a plug for any particular technology but this article on Time Series storage using MongoDB might provide another way of thinking about the storage of large amounts of "sensor" data.
http://www.10gen.com/presentations/mongodc-2011/time-series-data-storage-mongodb
Axibase Time-Series Database
Open source
There is a free Community Edition
Works well with Python
https://github.com/axibase/atsd-api-python. There are also other language wrappers, for example ATSD R client.
Appropriate for a small team
Built-in graphics and rule engine make it productive for building an in-house reporting, dashboarding, or monitoring solution with less coding.
Very well documented
It's hard to beat IBM redbooks, but we're trying. API, configuration, and administration is documented in detail and with examples.
Has specific features to take advantage of ordered time series data
It's a time-series database from the ground-up so aggregation, filtering and non-parametric ARIMA and HW forecasts are available.
Helps me solve some of my versioned data problems
ATSD supports versioned time-series data natively in SE and EE editions. Versions keep track of status, change-time and source changes for the same timestamp for audit trails and reconciliations. It's a useful feature to have if you need clean, verified data with tracing. Think energy metering, PHMR records. ATSD schema also supports series tags, which you could use to store versioning columns manually if you're on CE edition or you need to extend default versioning columns: status, source, change-time.
Disclosure - I work for the company that develops ATSD.
Big data = 1TB increasing by 10% every year.
Model is simple.. one table with 25 columns.
No joins with other tables..
I'm looking to do simple query filtering on a subset of the 25 columns..
I'd guess a traditional SQL store with indexes on the filtered columns is what's necessary. Hadoop is overkill and won't make sense as this is for a realtime service. mongo? a bi engine like pentaho?
Any recommendations?
It seems that traditional solution indeed sounds fine, unless there will not be any significant changes to the really simple model as you've described it.
NoSQL sounds like not the best choice for BI / Reporting.
Get a good hardware. Spend time on performance tests and build all the required indexes. Implement a proper new data upload strategy. Implement table-level partitioning in PostgreSQL according to your needs and performance tests.
P.S. If I could have a chance now to switch from ORACLE/DB2, I would definitely go for PostgreSQL.
I'd suggest investigating Infobright here - it's column-based & compressing, so you won't store the full TB, has a open-source version so you can try it out without being called by a bunch of salespeople (but last time I looked the OSS version was missing some really useful stuff, so you may end up wanting a license). Last time I tried it, it looked to the outside world like MySQL, so not hard to integrate. When I last checked it out, it was single-server-oriented, and claims to work with up to 50TB on a single server. I think that Infobright can sit behind Pentaho if you decide to move in that direction.
Something infobright had going for it was it was pretty close to no-admin - there's no manual indexing, or index maintenance.
Sounds like a column store would help. depends how you're handling inserts, and if you ever have to do updates. But as well as infobright if you're going commercial, then checkout vectorwise, it's quicker and similar priced.
If you want free/open source, then check out Luciddb - There's not many docs, but it is very good at what it does!
If you want unbelievable speed, then check out vectorwise. I believe it's about the same price as infobright, but much faster.
I'm working my way through a postgres query plan for the first time.
I'm having some trouble because I don't seem to be able to find any documentation that describes what each of the plan nodes are. In many cases, the name provides me with a reasonable guess, but in several the name of the plan node is too generic for me to have confidence in it.
Where can I find a list of types of plan nodes, with descriptions of each?
Chapter "56.1. Row Estimation Examples" explaines a lot, take a look.
Adding to Frank's answer, you might also want to peek at:
http://explain.depesz.com/
It reformats the plans in a more readable manner.