Camel Caps SOAP method names - soap

One of my co-workers is developing SOAP API for php application and he is wondering if CamelCaps names are some kind of convention for SOAP methods?
Our current API has lower_caps_and_underscores, but it seems somewhat strange when compared with random subset of other SOAP APIs, and we wouldn't really want to annoy consumers of API with our wrong convention.

In almost all standard SOAP API, I have seen, had CamelCaps. You may want to look standard SOAP API. i.e. google SOAP api
I think so Underscore may annoy users. You can follow either of them however more important is to follow any single standard naming conventions.
Other important thing to consider for naming a service is, naming should clearly establish a meaning and a context of the what service will do in a particular context.
i.e.
GetCustomerHistoryById = Get a single customers history by id
GetCustomersHistory = Get all customer's history

What language are you developing in (not that it matters)?
From my experience lower_with_underscores seems to be the preferred style for PHP development, but CamelCase seems to be more generally used.
Just a thought

For SOAP, you see either Pascal Casing or Camel Casing. The SOAP namespace is Pascal Cased (soap:Envelope anyone). I guess what you use depends on where you draw the line.
In general, I use Pascal Casing for Methods and Properties. These two elements embody the framework of the contract. Bearing this in mind, I would likely have SOAP elements that correspond to Methods and Properties Pascal Cased.
As for parameters and return values, I would have to think about breaking the Pascal casing rule and using camel casing there. Fortunatley, I am not building a SOAP API right now, so I have time to think about it.
I would not go with something outside of Pascal or Camel casing, however, as it is non standard. Not that I think people would say "I am not using YOUR API because it uses non-standard naming", but just as a matter of convention. But, then, people who buck convention often come up with the next new trend in development. ;-)

Related

Is implied inheritance restful?

Lets say I have a REST API where developers can publish offerings of properties (adress, price, living space) using
POST /offerings
Users can browse these offerings using
GET /offerings?page=0
Now I have a problem. Commercially used properties are handled on a different service (although they do end up on a common database)· The easiest way would be a separate endpoint and then redirect it using nginx.
POST /commericalOfferings
But is this still restful design? I was looking through a bunch of definitions for restful design but I can't come up with a clear answer.
Especially since theres no GET for commercialOfferings
So does anyone know if this is still a valid architecture?
is this still restful design?
It's fine.
There is nothing in REST that requires that information have one-and-exactly-one resource.
For example, the "authors' preferred version" of an academic paper is a mapping whose value changes over time, whereas a mapping to "the paper published in the proceedings of conference X" is static. These are two distinct resources, even if they both map to the same value at some point in time. The distinction is necessary so that both resources can be identified and referenced independently. A similar example from software engineering is the separate identification of a version-controlled source code file when referring to the "latest revision", "revision number 1.2.7", or "revision included with the Orange release." -- Fielding, 2000
As always, your basic heuristic for "it is RESTful" is to ask yourself: does it behave like a web site? If it does, then you are good.
It is okay, though I would do something different:
POST /offerings {commercial:true, ...}
GET /offerings?commercial=false&page=0
REST doesn't cover such design decisions, it works on a higher abstraction level. It just says that you must follow standards like HTTP, URI, etc. to build a uniform interface, something similar to OOP interfaces just on an inter-application communication level not on an inter-object communication level. Having nice URI-s like the upper is not a REST constraint either, nice URIs are just an unofficial recommendation, not a standard to follow. https://en.wikipedia.org/wiki/Clean_URL In REST there is a constraint called HATEOAS, which means you send hyperlinks in your responses and the client follows these hyperlinks - like you follow them by browsing a web page - instead of having hardcoded URI templates or building the URIs themselves, this is why from client perspective the URI structure does not matter at all. HATEOAS is part of the uniform interface constraint. And every REST constraint is mandatory except code-on-demand. https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm From service perspective the URI structure matters, it is easier to configure the router if you follow the nice URI recommendation.

ReST - PUT vs PATCH to minimize coupling between client & API when adding new properties

We are building set of new REST APIs.
Let's say we have a resource /users with the following fields:
{
id: 1
email: "test#user.com"
}
Clients implement this API and can then update this resource by sending a new resource representation to PUT /users/1.
Now let's say we add a new property name to the model like so:
{
id: 1
email: "test#user.com"
name: "test user"
}
If the models the existing clients are using are to call our API not updated, then calls to PUT /users/1 will remove the new name property since PUT is supposed to replace the resource. I know that the clients could work straight with the raw json to ensure they always receive any new properties that are added in the API, but that is a lot of extra work, and under normal circumstances clients are going to create their own model representations of the API resources on their side. This means that any time any new property is added, all clients need to update the code/models on their side to make sure they aren't accidentally removing properties. This creates unneeded coupling between systems.
As a way to solve this problem, we are considering not implementing PUT operations at all and switching updates to PATCH where properties that aren't passed in are simply not changed. That seems technically correct, but might not be in the spirit of REST. I am also slightly concerned about client support for the PATCH verb.
How are others solving this problem? Was is the best practice here?
You are in a situation where you need some form of API versioning. The most appropriate way is probably using a new media-type every time you make a change.
This way you can support older versions and a PUT would be perfectly legal.
If you don't want this and just stick to PATCH, PATCH is supported everywhere except if you use ancient browsers. Not something to worry about.
Switching from PUT to PATCH will not fix your problem, IMO. The root cause, IMO, is that clients already consider the data being returned for a representation to follow a certain type. According to Fielding
A REST API should never have “typed” resources that are significant to the client.
(Source)
Instead of using typed resources clients should use content-type negotiation to exchange data. Here, media-type formats that are generic enough to gain widespread adoption are for sure beneficial, certain domains may however require a more specific representation format.
Think of a car-vendor Web page where you can retrieve the data from your preferred car. You, as a human, can easily identify that the data depicts a typical car. However, the media-type you most likely received the data in (HTML) does not state by its syntax or the semantics of its elements that the data describes a car, unless some semantic annotation attributes or elements are present, though you might be able to update the data or use the data elsewhere.
This is possible as HTML ships with a rich specification of its elements and attributes, such as Web forms that not only describe the supported or expected input parameters but also the URI where to send the data to, the representation format to use upon sending (implicitly given by application/x-www-form-urlencoded; may be overwritten by the enctype attribute though) or the HTTP method to use, which is fixed to either GET or POST in HTML. Through this, a server is able to teach a client on how a request needs to be built. As a consequence the client does not need to know anything else besides having to understand the HTTP, URI and HTML specifications.
As Web pages are usually filled with all kinds of unrelated stuff, such as adds, styling information or scripts, and the XML(-like) syntax, which is not every ones favourite, as it may increase the size of the actual payload slightly, most so-called "REST" APIs do want to exchange JSON-based documents. While plain JSON is not an ideal representation format, as it does not ship with link-support at all, it is though very popular. Certain additions such as JSON Hyper-Schema (application/schema+json hyper-schema) or JSON Hypertext Application-Language (HAL) (application/hal+json) add support for links and link-relation. These can be used to render data received from the server as-is. However, if you want a response to automatically drive your application state (i.e. to dynamically draw the GUI with the processed data) a more specific representation format is needed, that can be parsed by your client and act accordingly as it understands what the server wants it to do with it (= affordance). If you like to instruct a client on how to build a request support for other media-types such as hal-forms or ion need to be supported. Certain media-types furthermore allow you to use a concept called profiles, that allow you to annotate a resource with a semantic type. HAL JSON i.e. does support something like that where the Content-Type header may now contain a value such as application/hal+json;profile=http://schema.org/Car that hints the media-type processor that the payload follows the definition of the given profile and may thus apply further validity checks.
As the representation format should be generic enough to gain widespread usage, and URIs itself shouldn't hint a client as well what kind of data to expect, an other mechanism needs to be used. Link relation names are basically an annotation for URIs that tell a client about the purpose of a certain link. A pageable collection might return links annotated with first, prev, next and last which are pretty obvious what they do. Other links might be hinted with prefetch, that hint a client that a resource can be loaded right after loading the current resource finished as it is very likely that the client will retrieve this resource next. Such media-types, however, should be either standardized (defined in a proposal or RFC and registerd with IANA) or follow the schema proposed by Web linking, (i.e. as used by Dublin Core). A client that just uses the URI for an invoked link-relation name will still work in case the server changes its URI scheme instead of attempting to parse some parameters from the URI itself.
In regards to de/coupling in a distributed system a certain amount of coupling has to exist otherwise parties wont be able to communicate at all. Though the point here is, the coupling should be based on well-defined and standardized formats that plenty of clients may support instead of exchanging specific representation formats only a very limited number of clients support (in worst case only the own client). Instead of directly coupling to the API and using an undefined JSON-based syntax (maybe with external documentation of the semantics of the respective fields) the coupling should now occur on the media-types parties can use to exchange the format. Here, not the question of which media-type to support should be asked but how many you want to support. The more media-types your client or server supports, the more likely it is to interact with other peers in the distributed system. On the grand-scheme of things, you want a server to be able to server a plethora of clients while a single client should be able to interact with (in best case) every server without the need for constant adoptions.
So, if you really want to decouple clients from servers, you should take a closer look at how the Web actually works and try to mimic its interaction model onto your application layer. As "Uncle Bob" Robert C. Martin mentioned
An architecture is about intent! (Source)
and the intention behind the REST architecture is the decoupling of clients from servers/services. As such, supporting multiple media-types (or defining your own-one that is generic enough to reach widespread adoption), looking up URIs just via their accompanying link-relation names and relying on content-type negotiation as well as relying only on the provided data may help you to achieve the degree of decoupling you are looking for.
All nice and well in theory, but so far every rest api I encountered in my career had predefined contracts that changed over time.
The problem here is, that almost all of those so called "REST APIs" are RPC services at its heart which should not be termed "REST" to start with - this is though a community issue. Usually such APIs ship with external documentation (i.e. Swagger) that just re-introduce the same problems classical RPC solutions, such as CORBA, RMI or SOAP, suffer from. The documentation may be seen as IDL in that process without the strict need for skeleton classes, though most "frameworks" use some kind of typed data classes that will either ignore the recently introduced field (in best case) or totally blow up on invocation.
One of the problems REST suffers from is, that most people haven't read Fieldings thesis and therefore don't see the big picture REST tries to establish but claim to know what REST is and therefore mix up things and call their services RESTful which lead to a situation where REST != REST. The ones pointing out what a REST architecture is and how one might achieve it are called out as dreamers and unworldly when the ones proclaiming the wrong term (RPC over HTTP = REST) continue to do so adding to the confusion of especially the ones just learning the whole matter.
I admit that developing a true REST architecture is really, really hard as it is just too easy to introduce some form of coupling. Hence, a very careful design needs to be done that needs time and also costs money. Money plenty of companies can't or don't want to spend, especially in a domain where new technologies evolve on a regular basis and the ones responsible for developing such solutions often leave the company before the whole process had finished.
Just saying it shouldn’t be ‘typed’ is not really a viable solution
Well, how often did you need to change your browser as it couldn't interact with a Web page? I don't talk about CSS-stuff or browser-specific CSS or JS stuff. How often needed the Web to change in the last 2-3 decades? Similar to the Web, the REST architecture is intended for long-lasting applications for years to come, that supports natural evolution by design. For simple frontend-2-backend systems it is for sure overkill. It starts to shine especially in cases where there are multiple peers not under your control you can interact with.

Terminology question: API somewhere between SOAP and REST - what is the name for them?

My understanding of SOAP vs REST:
REST = JSON, simple consistent interface, gives you CRUD access to 'entities' (Abstractions of things which are not necessarily single DB rows), simpler protocol, no formally enforced 'contract' (e.g. the values an endpoint returns could change, though it shouldn't)
SOAP = XML, more complex interface, gives you access to 'services' (specific operations you can apply to entities, rather than allowing you to CRUD entities directly), formally enforced, pre-stated 'contract' (like a WSDL, where e.g. the return types are predefined and formalized)
Is that a broadly correct assessment?
What about a mixture?
If so, what do I call an API that is a mixture?
For example, If we have what at surface level looks like a REST API (returns JSON, no WSDL or formalized contract defined - but instead of giving you access to the 'entities' that the system manages (User, product, comment, etc) it instead gives you specific access to services and complex operations (/sendUserAnUpdate/1111, /makeCommentTextPurple/3333, /getAllCommentsByUserThisYear/2222) without having full coverage?
The 'services' already exist internally, and the team simply publishes access to them on a request by request basis, through what would otherwise look like a REST API.
Question:
What is the 'mixture' typically referred to as (besides, maybe, a bad API). Is there a word for it? or a concept I can refer to that'll make most developers understand what I'm referring to, without having to say the entire paragraph I did above?
Is it just "JSON SOAP API?", "A Service-based REST API?" - what would you call it?
Thanks!
Thanks!
If you take a look at all those so-called REST-APIs your observation might seem true, though REST actually is something completely different. It describes an architecture or a philosophy whose intent it is to decouple clients from servers, allowing the latter one to evolve in future without breaking clients. It is quite similar to the typical Web page interaction in that a server will teach a client on what it needs and only reacts on client-triggered requests. One has to be pretty careful and pendant when designing REST services as it is too easy to include a coupling that may affect clients when a change is introduced, especially with all the pragmatism around in (commercial) software engineering. Stefan Tilkov gave a great talk on REST back in 2014 that, alongside with Jim Webber or Asbjørn Ulsberg, can be used as introduction lectures to what REST is at its core.
The general premise in REST should always be that a server teaches clients what they need and what a server expects and offers choices to the client via links. If the server expects to receive data from the client it will send a form-esque representation to inform the client about the respective fields it supports and based on the affordance of the respective elements contained in the form a client knows whether to select one or multiple options, enter some free text or enter a date value and such. Unfortunately, most of the media-type formats that attempt to mimic HTML's forms are still in draft versions.
If you take a look at HTML forms in particular you might sense what I'm refering to. Each of the elements that may occur inside a form are well defined to avoid abmiguity and improve interoperability. This is defacto the ultimate goal in REST, having one client that is able to interact with a sheer amount of other services without having to be adapted to each single API explicitely.
The beauty of REST is, it isn't limited to a single representation form, i.e. JSON, in fact there is almost an infinite number of possible representation formats that could be exchanged in a REST environment. Plain application/json is a terrible media-type for REST applications IMO as it doesn't include any defintions in regards to links and forms and doesn't describe the semantics of certain fields that may be shipped in requests and responses. The lack of semantical description usually leads to typed resources where a recipient expects that receiving data from i.e. /api/users returns some specific user data, that may differ from host to host. If you skim through IANA's media type registry you will find a couple of media-type formats you could have used to transfer user-related data and any client supporting these representation formats whold be able to interact with this enpoint without any issues. Fielding himself claimed that
A REST API should spend almost all of its descriptive effort in defining the media type(s) used for representing resources and driving application state, or in defining extended relation names and/or hypertext-enabled mark-up for existing standard media types. Any effort spent describing what methods to use on what URIs of interest should be entirely defined within the scope of the processing rules for a media type (and, in most cases, already defined by existing media types). (Source)
Through content-type negotiation client and server will negotiate about a representation format both support and understand. The question therefore shouldn't be which one to support but how many you want to support. The more media-type your API or client is able to exchange payloads for, the more likely it will be to interact with other participants.
Most of those so-called REST APIs are in reality just RPC services exposed via HTTP that may or may not respect and support certain HTTP operations. HTTP thereby is just a transport layer whose domain is the transfer of files or data over the Web. Plenty of people still believe that you shouldn't put verbs in URIs when in reality a script or process usually doesn't (and shouldn't) care whether a URI contains a verb or not. The URI itself is just a pointer a client will follow and invoke when it is interested in receiving the payload. We humans are also not that much interested in the URI itself in regards to the content it may return after invoking that URI. The same holds true for arbitrary clients. It is more important what you ship along with that URI. On the Web a link can be annotated with certain text and/or link relation names that set the links content in relation to the current page. It may hint a client that certain content may be invoked before the whole response was parsed as it is quite likely that the client will also want to know about that. preload i.e. is such a link-relation name that hints the client about that. If certain domain-specific terms exist one might use an extension scheme as defined by Web linking or reuse common knowlege or special microformats.
The whole interaction in a REST environment is similar to playing a text-based computer game or following a certain process flow (i.e. ordering and paying produts) defined by an application domain protocol, that can be designed as a state machine. The client is therefore guided through the whole process. It basically just follows the orders the server gave it, with some choices to break out of the process (i.e. cancel the order before paying).
SOAP on the otherhand is, as you've stated, an XML-based RPC protocol reusing a subset of HTTP to exchange requests and responses. The likelihood that when you change something within your WSDL plenty of clients have to be adapted and recompiled are quite high. SOAP even defines its own security mechanism instead of reusing TLS, which requires explicit support by the clients therefore. As you have a one-to-one communication model due to the state that may be kept in process, scaling SOAP services isn't that easy. In a REST environment this is just a matter of adding a load-balancer before the server and then mirroring the server n-times. The load-balancer can send the request to any of the servers due to the stateless constraint
What is the 'mixture' typically referred to as (besides, maybe, a bad API). Is there a word for it? or a concept I can refer to that'll make most developers understand what I'm referring to, without having to say the entire paragraph I did above?
Is it just "JSON SOAP API?", "A Service-based REST API?" - what would you call it?
The general term for an API that communicates on top of HTTP would be Web API or HTTP API IMO. This article also uses this term. It also lists XML-RPC and JSON-RPC besides SOAP. I do agree with Voice though that you'll receive 5 answers on asking 4 people about the right term to use. While it would be convenient to have a respective term available everyone would agree upon, the reality shows that people are not that interested in a clear separation. Just look here at SO on the questions taged with rest. There is nothing wrong with not being "RESTful", though one should avoid the term REST for truly RPC services. Though I think we are already in a situation where the term REST can't be rescued from misusage and marketing purposes.
For something that requires external documentation to use and that ships with its own custom, non-standardized representation format or that just exposes CRUD for domain objects I'd add -RPC to it, as this is more or less what it is at its heart. So if the API sends JSON and the representation to expect is documented via Swagger or some other external documentationJSON-RPC would probably the most fitting name IMO.
To sum up this post, I hope I could shed some light on what REST truly is and how your observation is flawed by all those pragmatic attempts that unfortunately are RPC through and through. If you change something within their implementation, how many clients will break? In addition to that you can't reuse the client that you've implemented for API A to interact with API B (of a different company or vendor) out of the box and therefore have to either adapt your client or create a new one solely for that API. This is true RPC and therfore should be reflected in the name somehow to hint developers about future expectations. Unfortunately, the process of naming things propperly, especially in regards to REST, seems already lost. There is a fine but tiny group who attempt to spread the true meaning, like Voice, Cassio and some others, though it is like fighting windmills. The best advice here would be to first discuss the naming conventions and what each participant understand on which term and then agree on a naming scheme everyone agrees on to avoid future confusion.
My understanding of SOAP vs REST
...
Is that a broadly correct assessment?
No.
REST is an "architectural style", which is to say a coordinated collection of architectural constraints. The World Wide Web is an example of an application built using the REST architectural style.
SOAP is a transport agnostic message protocol specification, based on XML Information Set
If so, what do I call an API that is a mixture?
I don't think you are going to find an authoritative terminology here. Colloquially, you are likely to hear the broad umbrella term "web api" to describe an HTTP API that isn't "RESTful".
The whole space is rather polluted by semantic diffusion.

Should RESTful service in Golang include Client interface?

If I develop Booking REST service in Golang (i.e., in package booking). Is it a "GO way" to create BookingClient interface (backed up by struct) with business operations allowed, so that clients of my restful service would use BookingClient (imported from package booking) instead of sending http requests directly?
In general, no – if you provide a client in a particular language it'd only be a convenience, so (some) users can use your API easier. This of course assumes your client is well designed. I wouldn't provide merely an interface in Go just to indicate a set of possible API calls. This would be beneficial to a very narrow range of audience, probably for people developing a client for your API themselves, in programming language which just happened to be the same as implementation of your server. And even then they might not really like the idea of using the interface (e.g. they might only need a specific set of methods).
If you want to provide a client for your API, go ahead, do it, but separate it from the actual server (different package, maybe even different repo). In general one develops APIs over HTTP to allow for wide range of clients to access it, which could be written in any language. Instead of providing some interfaces I would invest my time in writing a good documentation.
In my opinion the answer to your question, assuming there is no more context provided, should be no different if you asked yourself if you should provide a client in, say, Python. The whole situation might change though if, for example, your API is used internally by your company and you develop mainly in Go.
It's usually preferable to do this, and most companies do, but provide documentation for working directly with the API. The main use case for that is people working with different languages than the ones you intended.
You can have a look at a new RESTful framework I wrote, that includes infrastructure to automatically compile clients with Go templates, although I haven't gotten to writing a Go client compiler. If you want to write one it would be greatly appreciated :) https://github.com/EverythingMe/vertex
Testing is important in Go, so writing testable code is something you should do. If you use direct http requests you will have a harder time writing unit tests, compared to using a mocked struct.
Is there any reason to use a Client rather than calling the functions that call the REST endpoints? It's usually harder to mock a bigger thing, such as a Client struct, rather than a group of small functions.
You should put the client at booking.Client to avoid repeating yourself (booking.BookingClient) and maybe rename Client to something more descriptive.

REST GET verb with parameters

I'm sitting reading on some REST with my fellow teammates, we are writing a RoR application that is going to expose some of its functionality to the rest of the world.
My task on this team is to make a ressource that exposes journal reports. If you call
http://root.com/journalreports
You should get all the journalreports from the service. Thats working like a charm, but I'm confused on how to properly make a ressource that exposes a range of journalreports. Should I make it
http://root.com/journalreports?range=1/2/2010;5/2/2010
Or is this illegal when we talk about REST because of the ?range= interference?
What is the most proper way of giving a REST ressource some parameters?
Parameters are perfectly OK, especially for search-resources like in your case (querying a set of journals).
I recently answered similar question (path vs. parameter)
REST doesn't make query parameter "illegal" in any way. It's an architectural style, mainly about driving the application by exchanging representations.
Considering URIs are meant to be opaque, there's no real difference between http://example.com/page/1 and http://example/?page=1 for example, as far as REST is concerned (it ultimately depends on the representations that are sent, but the choice or URI style tends to be an implementation detail).
What matters is how the client are going to find out about the URIs of your reports.
HTML can do this very well with forms and query parameters. Whether your service is for browser consumption or another agent doesn't really matter, you can use the same principles. You could have HTML forms (or equivalent if your client isn't a browser) if you want it to be more flexible or via explicit links on your top page. (You may find it's easier to split the range into two parameters, like "from" and "to", if you want this to be more dynamic.)