Raw Socket Receive Buffer - sockets

We are currently testing a Telecom application over IP. We open a Raw Socket and receives messages from the remote side (msgrate#750+msgs/second approx size of 180 bytes excluding IP).
On top of the Raw socket sits a layer called SCTP (just like TCP) which is indicating every now and then that it is missing some packets. Now, we are running Wireshark on the receive node and we can see that packet in Wireshark.
It looks to me that the receive buffer of the socket is small causing IP(?) to drop messages. However, IP Pegs(netstat -sv) show NO dropped packets. We have tried setting the socket receive queue to 40000 without any success.
I would appreciate any pointers as to what option, if any, of IP layer should we be configuring or is there any specific socket option that we need to set.

Thanks for your inputs. However, we have been able to "solve" this problem.
Earlier, I described how we read messages.
Once select returns, we run a loop (to the tune of number of Raw Messages to read which was >1 in our case).
1) we call ioctl(FIONREAD) to find the number of bytes to read;
2) read that many bytes by calling recvfrom
3) send the bytes upto the user
4) go into loop again and call ioctl(FIONREAD) and then repeat the steps
However, at point 4, ioctl(FIONREAD) use to return 0. Our code had a defensive check. It was expecting, a 0 bytes from ioctl(FIONREAD) means that the sender has send an IP header with 0 payload. Therefore, it use to call recvfrom(bytes to read=0) to flush out the IP header lest the select will set again on this.
At time t0, ioctl(FIONREAD) returns 0 as number of bytes to read
At time t1, recvfrom(bytes to read=0) is called.
Sometimes, between t0 and t1, actual data use to get queued in the socket receive queue and use to get discarded as we were calling recvFrom(bytes=0).
Setting, the number of rawMsgsToRead=1 has "solved" this problem. However, my guess is it will impact our performance. Is their any ioctl call which can differentiate between octets in the queue as 0 and IP header with payload 0

I have a few questions and a few things to think about.
1) Which implementation of SCTP are you using and on which OS. Some SCTP implementations are more robust than others.
2) Is SCTP negatively acknowledging the dropped packets? Search for a gap acks in wireshark.
3) And where you see the dropped packets in wireshark are you sure that these are not retransmissions?
4) Where in the system is wireshark monitoring? If it is not on the same wire as your application then it may be seeing messages which your application doesn't.
5) What exactly is the indication SCTP is giving?
If you believe that the IP socket rx buffer is overflowing then you could consider reducing the size of the SCTP RX window; this is often configurable in sctp stacks. The Rx window limits the amount of data that can be outstanding waiting for acknowledgement and consequently restricts the amount of data which could be in the IP buffer.
You could also try raising the priority of your SCTP task so that it more quickly reads messages out of the IP buffers (This may be the easiest thing to try and in my opinion a good thing to do).
Regards

Related

How exactly do socket receives work at a lower level (eg. socket.recv(1024))?

I've read many stack overflow questions similar to this, but I don't think any of the answers really satisfied my curiosity. I have an example below which I would like to get some clarification.
Suppose the client is blocking on socket.recv(1024):
socket.recv(1024)
print("Received")
Also, suppose I have a server sending 600 bytes to the client. Let us assume that these 600 bytes are broken into 4 small packets (of 150 bytes each) and sent over the network. Now suppose the packets reach the client at different timings with a difference of 0.0001 seconds (eg. one packet arrives at 12.00.0001pm and another packet arrives at 12.00.0002pm, and so on..).
How does socket.recv(1024) decide when to return execution to the program and allow the print() function to execute? Does it return execution immediately after receiving the 1st packet of 150 bytes? Or does it wait for some arbitrary amount of time (eg. 1 second, for which by then all packets would have arrived)? If so, how long is this "arbitrary amount of time"? Who determines it?
Well, that will depend on many things, including the OS and the speed of the network interface. For a 100 gigabit interface, the 100us is "forever," but for a 10 mbit interface, you can't even transmit the packets that fast. So I won't pay too much attention to the exact timing you specified.
Back in the day when TCP was being designed, networks were slow and CPUs were weak. Among the flags in the TCP header is the "Push" flag to signal that the payload should be immediately delivered to the application. So if we hop into the Waybak
machine the answer would have been something like it depends on whether or not the PSH flag is set in the packets. However, there is generally no user space API to control whether or not the flag is set. Generally what would happen is that for a single write that gets broken into several packets, the final packet would have the PSH flag set. So the answer for a slow network and weakling CPU might be that if it was a single write, the application would likely receive the 600 bytes. You might then think that using four separate writes would result in four separate reads of 150 bytes, but after the introduction of Nagle's algorithm the data from the second to fourth writes might well be sent in a single packet unless Nagle's algorithm was disabled with the TCP_NODELAY socket option, since Nagle's algorithm will wait for the ACK of the first packet before sending anything less than a full frame.
If we return from our trip in the Waybak machine to the modern age where 100 Gigabit interfaces and 24 core machines are common, our problems are very different and you will have a hard time finding an explicit check for the PSH flag being set in the Linux kernel. What is driving the design of the receive side is that networks are getting way faster while the packet size/MTU has been largely fixed and CPU speed is flatlining but cores are abundant. Reducing per packet overhead (including hardware interrupts) and distributing the packets efficiently across multiple cores is imperative. At the same time it is imperative to get the data from that 100+ Gigabit firehose up to the application ASAP. One hundred microseconds of data on such a nic is a considerable amount of data to be holding onto for no reason.
I think one of the reasons that there are so many questions of the form "What the heck does receive do?" is that it can be difficult to wrap your head around what is a thoroughly asynchronous process, wheres the send side has a more familiar control flow where it is much easier to trace the flow of packets to the NIC and where we are in full control of when a packet will be sent. On the receive side packets just arrive when they want to.
Let's assume that a TCP connection has been set up and is idle, there is no missing or unacknowledged data, the reader is blocked on recv, and the reader is running a fresh version of the Linux kernel. And then a writer writes 150 bytes to the socket and the 150 bytes gets transmitted in a single packet. On arrival at the NIC, the packet will be copied by DMA into a ring buffer, and, if interrupts are enabled, it will raise a hardware interrupt to let the driver know there is fresh data in the ring buffer. The driver, which desires to return from the hardware interrupt in as few cycles as possible, disables hardware interrupts, starts a soft IRQ poll loop if necessary, and returns from the interrupt. Incoming data from the NIC will now be processed in the poll loop until there is no more data to be read from the NIC, at which point it will re-enable the hardware interrupt. The general purpose of this design is to reduce the hardware interrupt rate from a high speed NIC.
Now here is where things get a little weird, especially if you have been looking at nice clean diagrams of the OSI model where higher levels of the stack fit cleanly on top of each other. Oh no, my friend, the real world is far more complicated than that. That NIC that you might have been thinking of as a straightforward layer 2 device, for example, knows how to direct packets from the same TCP flow to the same CPU/ring buffer. It also knows how to coalesce adjacent TCP packets into larger packets (although this capability is not used by Linux and is instead done in software). If you have ever looked at a network capture and seen a jumbo frame and scratched your head because you sure thought the MTU was 1500, this is because this processing is at such a low level it occurs before netfilter can get its hands on the packet. This packet coalescing is part of a capability known as receive offloading, and in particular lets assume that your NIC/driver has generic receive offload (GRO) enabled (which is not the only possible flavor of receive offloading), the purpose of which is to reduce the per packet overhead from your firehose NIC by reducing the number of packets that flow through the system.
So what happens next is that the poll loop keeps pulling packets off of the ring buffer (as long as more data is coming in) and handing it off to GRO to consolidate if it can, and then it gets handed off to the protocol layer. As best I know, the Linux TCP/IP stack is just trying to get the data up to the application as quickly as it can, so I think your question boils down to "Will GRO do any consolidation on my 4 packets, and are there any knobs I can turn that affect this?"
Well, the first thing you can do is disable any form of receive offloading (e.g. via ethtool), which I think should get you 4 reads of 150 bytes for 4 packets arriving like this in order, but I'm prepared to be told I have overlooked another reason why the Linux TCP/IP stack won't send such data straight to the application if the application is blocked on a read as in your example.
The other knob you have if GRO is enabled is GRO_FLUSH_TIMEOUT which is a per NIC timeout in nanoseconds which can be (and I think defaults to) 0. If it is 0, I think your packets may get consolidated (there are many details here including the value of MAX_GRO_SKBS) if they arrive while the soft IRQ poll loop for the NIC is still active, which in turn depends on many things unrelated to your four packets in your TCP flow. If non-zero, they may get consolidated if they arrive within GRO_FLUSH_TIMEOUT nanoseconds, though to be honest I don't know if this interval could span more than one instantiation of a poll loop for the NIC.
There is a nice writeup on the Linux kernel receive side here which can help guide you through the implementation.
A normal blocking receive on a TCP connection returns as soon as there is at least one byte to return to the caller. If the caller would like to receive more bytes, they can simply call the receive function again.

how to receive large number of UDP packets continously in vc++

I am writing an GUI application which receives UDP packets from a FPGA board of 4Gb data continuously (application is a data retrieval system).
I created my own class inherited from CAyncSocket and on receive message I am reading packets through ReceiveFrom API and writing data to file.
As packets are sent continuously from FPGA (about 400k packets of 1KB data) my application is missing the packets. I am receiving only 200k packets. but when I am monitoring with Wireshark all packets are received.
Can anyone suggest any technique or algorithm to solve this problem, so that I can receive large number of UDP packets without loss.
The first thing to understand and accept is that you cannot guarantee that no UDP packets will be dropped. It is part of the nature of the UDP transport layer that any step in the transmission is allowed to drop a UDP packet for any reason, and that this is something that will happen from time to time. In your case, it sounds like the Windows networking stack is dropping the incoming UDP packets after receiving them from the network card, probably because the incoming-UDP-packets buffer associated with your socket is too full and does not have room to store them. This could happen for example if your write-to-disk calls occasionally take a number of milliseconds to return, during which time your app is unable to read more data from the UDP socket.
That said, there are a few things you can do to make the dropping of packets somewhat less likely.
The first (and easiest) thing to do is to increase the size of your socket's incoming-packets-buffer, using setsockopt(SO_RCVBUF). This helps because the larger the buffer is, the more time your program will have to read packets out of the buffer before the networking stack fills the buffer up entirely and starts dropping packets because it has no place to put them.
If that isn't sufficient for your purposes, the other thing you can do is spawn a separate thread that does nothing but receive incoming UDP packets and add them to a queue (for another thread to process later). Because this thread does nothing else besides receive UDP packets, it will be able to respond quickly when new packets have arrived, and thus the incoming-sockets-buffer will be less likely to ever fill up and overflow. You'll probably want to run this thread at a high priority if possible, so that there is less chance of it being held off of the CPU in the case where other threads or programs are competing for CPU time.
If you've implemented both of the above and the rate of packet loss still isn't acceptable, then you may have to step back and re-evaluate your approach. This might include switching from UDP protocol to TCP, or rewriting your code as an in-kernel driver, or switching to a real-time OS that can make better guarantees about response times.

How to split received with boost asio udp sockets united datagrams

I've made my UDP server and client with boost::asio udp sockets. Everything looked good before I started sending more datagrams. They come correctly from client to server. But, they are united in my buffer into one message.
I use
udp::socket::async_receive with std::array<char, 1 << 18 > buffer
for making async request. And receive data through callback
void on_receive(const error_code& code, size_t bytes_transferred)
If I send data too often (every 10 milliseconds) I receive several datagrams simultaneously into my buffer with callback above. The question is - how to separate them? Note: my UDP datagrams have variable length. I don't want to use addition header with size, cause it'll make my code useless for third-party datagrams.
I believe this is a limitation in the way boost::asio handles stateless data streams. I noticed exactly the same behavior when using boost::asio for a serial interface. When I was sending packets with relatively large gaps between them I was receiving each one in a separate callback. As the packet size grew and the gap between the packets therefore decreased, it reached a stage when it would execute the callback only when the buffer was full, not after receipt of a single packet.
If you know exactly the size of the expected datagrams, then your solution of limiting the input buffer size is a perfectly sensible one, as you know a-priori exactly how large the buffer needs to be.
If your congestion is coming from having multiple different packet types being transmitted, so you can't pre-allocate the correct size buffer, then you could potentially create different sockets on different ports for each type of transaction. It's a little more "hacky" but given the virtually unlimited nature of ephemeral port availability, as long as you're not using 20,000 different packet types that would probably help you out as-well.

Is a successful send() "atomic"?

Does a successful call to send() with the number returned equal to the amount specified in the size parameter guarantee that no "partial sends" will occur?
Or is there some way that the OS might be interrupted while servicing the system call, send part of the data, wait for a possibly long time, then send the rest and return without notifying me with a smaller return value?
I'm not talking about a case where there is not enough room in the kernel buffer; I realize that I would then get a smaller return value and have to try again.
Update:
Based on the answers so far, my question could be rephrased as follows:
Is there any way for packets/data to be sent over the wire before the call to send() returns?
Does a successful call to send() with the number returned equal to the amount specified in >the size parameter guarantee that no "partial sends" will occur?
No, it's possible that parts of your data gets passed over the wire, and another part only goes as far as being copied into the internal buffers of the local TCP stack. send() will return the no. of bytes passed to the local TCP stack, not the no. of bytes that gets passed onto the wire (and even if the data reaches the wire, it might not reach the peer).
Or is there some way that the OS might be interrupted while servicing the system call, send part of the data, wait for a possibly long time, then send the rest and return without notifying me with a smaller return value?
As send() only returns the no. of bytes passed into the local TCP stack, not whether send() actually sends anything, you can't really distinguish these two cases anyway. But yes, it's possibly only some data makes it over the wire. Even if there's enough space in the local buffer, the peer might not have enough space. If you send 2 bytes, but the peer only has room for 1 more byte, 1 byte might be sent, the other will reside in the local tcp stack until the peer has enough room again.
(That's an extreme example, most TCP stacks protects against sending such small segments of data at a time, but the same applies if you try to send 4k of data but the peer only have room for 3k).
I'm not talking about a case where there is not enough room in the kernel buffer; I realize that I would then get a smaller return value and have to try again
That will only happen if your socket is non-blocking. If it's blocking and the local buffers are full, send() will wait until there's room in the local buffers again (or, it might return
a short count if parts of the data was delivered, but an error occured in the mean time.)
Edit to answer:
Is there any way for packets/data to be sent over the wire before the call to send() returns?
Yes. That might happen for many reasons.
e.g.
The local buffers gets filled up by that recent send() call, and you use blocking I/O.
The TCP stack sends your data over the wire but decides to schedule other processes to
run before that sending process returns from send().
Though this depends on the protocol you are using, the general question is no.
For TCP the data gets buffered inside the kernel and then sent out at the discretion of the TCP packetization algorithm, which is pretty hairy - it keeps multiple timers, minds path MTU trying to avoid IP fragmentation.
For UDP you can only assume this kind of "atomicity" if your datagram does not exceed link frame size (usual value is 1472 = 1500 of ethernet frame - 20 bytes of IP header - 8 bytes of UDP header). Otherwise your sending host will have to IP-fragment the datagram.
Then intermediate routers can still IP-fragment the passing packet if their outgoing link MTU is less then the packet size.

Benefits of "Don't Fragment" on TCP Packets?

One of our customers is having trouble submitting data from our application (on their PC) to a server (different geographical location). When sending packets under 1100 bytes everything works fine, but above this we see TCP retransmitting the packet every few seconds and getting no response. The packets we are using for testing are about 1400 bytes (but less than 1472). I can send an ICMP ping to www.google.com that is 1472 bytes and get a response (so it's not their router/first few hops).
I found that our application sets the DF flag for these packets, and I believe a router along the way to the server has an MTU less than/equal to 1100 and dropping the packet.
This affects 1 client in 5000, but since everybody's routes will be different this is expected.
The data is a SOAP envelope and we expect a SOAP response back. I can't justify WHY we do it, the code to do this was written by a previous developer.
So... Are there any benefits OR justification to setting the DF flag on TCP packets for application data?
I can think of reasons it is needed for network diagnostics applications but not in our situation (we want the data to get to the endpoint, fragmented or not). One of our sysadmins said that it might have something to do with us using SSL, but as far as I know SSL is like a stream and regardless of fragmentation, as long as the stream is rebuilt at the end, there's no problem.
If there's no good justification I will be changing the behaviour of our application.
Thanks in advance.
The DF flag is typically set on IP packets carrying TCP segments.
This is because a TCP connection can dynamically change its segment size to match the path MTU, and better overall performance is achieved when the TCP segments are each carried in one IP packet.
So TCP packets have the DF flag set, which should cause an ICMP Fragmentation Needed packet to be returned if an intermediate router has to discard a packet because it's too large. The sending TCP will then reduce its estimate of the connection's Path MTU (Maximum Transmission Unit) and re-send in smaller segments. If DF wasn't set, the sending TCP would never know that it was sending segments that are too large. This process is called PMTU-D ("Path MTU Discovery").
If the ICMP Fragmentation Needed packets aren't getting through, then you're dealing with a broken network. Ideally the first step would be to identify the misconfigured device and have it corrected; however, if that doesn't work out then you add a configuration knob to your application that tells it to set the TCP_MAXSEG socket option with setsockopt(). (A typical example of a misconfigured device is a router or firewall that's been configured by an inexperienced network administrator to drop all ICMP, not realising that Fragmentation Needed packets are required by TCP PMTU-D).
The operation of Path-MTU discovery is described in RFC 1191, https://www.rfc-editor.org/rfc/rfc1191.
It is better for TCP to discover the Path-MTU than to have every packet over a certain size fragmented into two pieces (typically one large and one small).
Apparently, some protocols like NFS benefit from avoiding fragmentation (link text). However, you're right in that you typically shouldn't be requesting DF unless you really require it.