How do I determine the character set of a string? - perl

I have several files that are in several different languages. I thought they were all encoded UTF-8, but now I'm not so sure. Some characters look fine, some do not. Is there a way that I can break out the strings and try to identify the character sets? Perhaps split on white space then identify each word? Finally, is there an easy way to translate characters from one set to UTF-8?

If you don't know the character set for sure You can only guess, basically. utf8::valid might help you with that, but you can't really know for sure. If you know that if it isn't unicode it must be a specific character set (Like Latin-1), you lucky. If you have no idea, you're screwed. In any case, you should always assume the whole file is in the same character set, unless otherwise specified. You will lose your sanity if you don't.
As for your question how to convert between character sets: Encode is there to do that for you

Determining whether a file is probably UTF-8 or not should be pretty easy. Determining the encoding if it is not UTF-8 would be very difficult in general.
If the file is encoded with UTF-8, the high bits of each byte should follow a pattern. If a character is one byte, its high bit will be cleared (zero). Otherwise, an n byte character (where n is 2–4) will have the high n bits of the first byte set to one, followed by a single zero bit. The following n - 1 bytes should all have the highest bit set and the second-highest bit cleared.
If all the bytes in your file follow these rules, it's probably encoded with UTF-8. I say probably, because anyone can invent a new encoding that happens to follow the same rules, deliberately or by chance, but interprets the codes differently.
Note that a file encoded with US-ASCII will follow these rules, but the high bit of every byte is zero. It's okay to treat such a file as UTF-8, since they are compatible in this range. Otherwise, it's some other encoding, and there's not an inherent test to distinguish the encoding. You'll have to use some contextual knowledge to guess.

Take a look at iconv
http://www.gnu.org/software/libiconv/
Text::Iconv

Related

Why can't we store Unicode directly?

I read some article about Unicode and UTF-8.
The Unicode standard describes how characters are represented by code points. A code point is an integer value, usually denoted in base 16. In the standard, a code point is written using the notation U+12CA to mean the character with value 0x12ca (4,810 decimal). The Unicode standard contains a lot of tables listing characters and their corresponding code points:
Strictly, these definitions imply that it’s meaningless to say ‘this is character U+12CA‘. U+12CA is a code point, which represents some particular character; in this case, it represents the character ‘ETHIOPIC SYLLABLE WI’. In informal contexts, this distinction between code points and characters will sometimes be forgotten.
To summarize the previous section: a Unicode string is a sequence of code points, which are numbers from 0 through 0x10FFFF (1,114,111 decimal). This sequence needs to be represented as a set of bytes (meaning, values from 0 through 255) in memory. The rules for translating a Unicode string into a sequence of bytes are called an encoding.
I wonder why we have to encode U+12CA to UTF-8 or UTF-16 instead of saving the binary of 12CA in the disk directly. I think the reason is:
Unicode is not Self-synchronizing code, so if
10 represent A
110 represent B
10110 represent C
When I see 10110 in the disk we can't tell it's A and B or just C.
Unicode uses much more space instead of UTF-8 or UTF-16.
Am I right?
Read about Unicode, UTF-8 and the UTF-8 everywhere website.
There are more than a million Unicode code-points (you mentionned 1,114,111...). So you need at least 21 bits to be able to separate all of them (since 221 > 1114111).
So you can store Unicode characters directly, if you represent each of them by a wide enough integral type. In practice, that type would be some 32 bits integer (because it is not convenient to handle 3-bytes i.e. 24 bits integers). This is called UCS-4 and some systems or software do already handle their Unicode string in such a format.
Notice also that displaying Unicode strings is quite difficult, because of the variety of human languages (and also since Unicode has combining characters). Some need to be displayed right to left (Arabic, Hebrew, ....), others left to right (English, French, Spanish, German, Russian ...), and some top to down (Chinese, ...). A library displaying Unicode strings should be capable of displaying a string containing English, Chinese and Arabic words.... Then you see that decoding UTF-8 is the easy part of Unicode string displaying (and storing UCS-4 strings won't help much).
But, since English is the dominant language in IT technology (for economical reasons), it is very often cheaper to keep strings in UTF8 form. If most of the strings handled by your system are English (or in some other European language using the Latin alphabet), it is cheaper and it takes less space to keep them in UTF-8.
I guess than when China will become a dominant power in IT, things might change (or maybe not).
(I have no idea of the most common encoding used today on Chinese supercomputers or smartphones; I guess it is still UTF-8)
In practice, use a library (perhaps libunistring or Glib in C), to process UTF-8 strings and another one (e.g. pango and GTK in C) to display them. You'll find many Unicode related libraries in various programming languages.
I wonder why we have to encode U+12CA to UTF-8 or UTF-16 instead of saving the binary of 12CA in the disk directly.
How do you write 12CA to a disk directly? It is a bigger value than a byte can hold, so you need to write at least two bytes. Do you write 12 followed by CA? You just encoded it in UTF-16BE. That's what an encoding is...a definition of how to write an abstract number as bytes.
Other reading:
The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Character Sets (No Excuses!)
Pragmatic Unicode
For good and specific reasons, Unicode doesn't specify any particular encoding. If it makes sense for your scenario, you can specify your own.
Because Unicode doesn't specify any serialization, there is no way to "directly" store Unicode, just like you can't "directly" store a mathematical number or a flow chart to implement a program you designed. The question isn't really well-defined.
There are a number of existing serialization formats (encodings) so it is very likely that it makes the most sense to use an existing one unless your requirements are significantly different than what any existing encoding provides; even then, is it really worth the cost?
A stream of bits is just a stream of bits. Conventionally, we chop them up into groups of 8 and call that a "byte" and the latter half of your question is really "if it's not a byte, how can you tell which bits belong to which symbol?" There are many ways to do that, but the common ones generally define a sequence of some particular length (8, 16, and 32 are often convenient for reasons of compatibility with bus width on modern computers etc) but again, if you really wanted to, you could come up with something different. Huffman trees come to mind as one way to implement a way to communicate a structure of variable length (and is used for precisely that in many compression algorithms).
Consider one situation, even if you can directly save unicode binary into disk and close the file, what happens when you open the file again? It's just a bunch of binary, you don't know how many bytes a char occupied right, which means, if '🥶'(U+129398) and 'A' are the content of your file, then if you take it 1 byte for a char, then '🥶' can't be decoded correctly, which takes 2 bytes, then instead 1 emoji you see, you get two, which is U+63862 and U+65536 unicode char.

How do I create a character set like ASCII?

I'm curious about the way that in the past it was implemented and I want to get information about how can I implement a character set of my own.
ASCII (American Standard Code for Information Interchange) was the "original" characterset, and remains the basis for most text data. ASCII is actually a 7-bit code (the numeric values range from 0 to 127) with the most significant bit of a byte indicating if the rest of the byte refers to ASCII (if zero) or the current Codepage.
Extra (non-ascii) characters were then added to these codepages, and the user's computer would load a specific codepage to use. Unfortunately this meant that you needed to load the correct codepage before viewing a file or the wrong characters would appear.
We have now moved on, and most systems use Unicode which is a variable character length (rather than the single-byte characters used previously) which can contain thousands upon thousands of characters, allowing for a single encoding to cater for what would have been multiple codepages using the ASCII+Codepage method of old.
That's the brief history; As to how to create your own characterset, I'm not sure what you are trying to achieve - You can create your own fonts, but if you're talking about an actual characterset (i.e. characters that do not already exist) then you'll have to get your characterset added to a standard such as Unicode so that other computers can make use of your new characters, which would be a considerable amount of work (and I have no idea how you'd even go about it) -- It's worth considering, however, that almost every character in existence already exists in Unicode so you may want to review what's already been done before you try and take on a mammoth undertaking such as creating an entirely new characterset.

Working with strings with mixed encodings in python 3.x

I'm working with a binary file that references another file using absolute paths.
The path contains both japanese and ascii characters.
The length of the string is given, so I can just read that many bytes and convert it into a string.
However the problem is trying to convert the string. If I specify the encoding as ascii, it'll fail on the japanese characters. If I specify it as japanese encoding (shift-jis or something), it won't read the english characters properly.
One byte is used for each ascii character, while two bytes are used for each japanese character.
What is the fastest and cleanest way to convert these bytes into a string? The encodings are known. Will the same technique work in older versions of python.
This sounds like you have fallen victim for a misunderstand the basics of Unicode and encodings. It may be that you have not, but misunderstandnings are common and understandable, while the situation you describe are not.
A string of bytes that contains mixed encodings are, per definition, invalid in any of these encodings. If this really was the case, you would have to split the bytes string into it's parts, and decode every part separately. In this case it would probably mean splitting on the path separators, so it would be reasonably easy, but in other cases it would not. However, I serously doubt that this is the case, as it would mean that your source is insane. That happens, but it is unlikely. :-)
If the source gives you one path as a bytes string, it is most likely that this string uses only one encoding. It may contain both Japanese and ASCII-characters and still be using one encoding. The most common encodings that can handle both Japanese and ASCII are UTF-8 and UTF-16. My guess is that your source uses one of those. In fact, since you write "One byte is used for each ascii character, while two bytes are used for each japanese character" it is probably UTF-8. It could also be Shift JIS, but it seems you already tried that.
If not, please explain what your source is, and give examples of the byte strings (in ASCII/HEX) that you are given.

When to use Unicode (aside with non-unicode!)

I haven't found much (concise) info about when exactly to use Unicode. I understand that many say best practice is to always use Unicode. But Unicode strings DO have more memory footprint. Am I correct to say that Unicode must be used only when
Printing something to screen other than local (for example debugging) use.
Generally, sending any type of text across a network with the two ends being in different locales/country
When you're not sure which to use
I think it would be beneficial if someone explained the basics (concise) of what actually happens with Unicode... am I correct to say that things get messy when :
the physical (byte) string gets sent to a machine using a representation of strings (code page, others... this is already detail although interesting) different from the sender.
The context is using Unicode in a programming language (say C++), but I hope answers to this question can be used for any encoding situation.
Also, I'm aware Unicode and NLS are not the same thing, but is it correct to say that NLS implies usage of Unicode?
P.S. awesome site
Always use Unicode, it will save you and others a lot of pain.
What you may have confused is the issue of encoding. Unicode strings do not necessarily take more memory than the equivalent ASCII (or other encoding) strings, that depends a lot on the encoding used.
Sometimes "Unicode" is used as a synonym for "UCS-2" or "UTF-16". Strictly speaking that use is wrong, because "Unicode" is the standard that defines the set of characters and their unicode codepoints. It does not as such define a mapping to bytes (or words). UTF-16, UTF-8 and other encoding take over the job of mapping the characters to concrete bytes.
The beauty of Unicode is that it frees you from restrictions and lots of headaches. Unicode is the largest character set available to date, i.e. it enables you to actually encode and use virtually any character of any halfway mainstream language in use today. With any other character set you need to think about whether it can actually encode a character or not. Latin-1 cannot encode the character "あ", Shift-JIS cannot encode the character "ڥ" and so on. Only if you're very sure you will never ever need anything other than basic Latin/Arabic/Japanaese/whatever other subset of characters should you choose a specialized encoding such as Latin-1, BIG-5, Shift-JIS or ASCII.
Unicode is the most versatile charset available and therefore a good standard to adhere to.
The Unicode encodings are nothing special, they're just a little more complex in their bit representation since they have to encode many more characters while still trying to be space efficient. For a very detailed excursion into this topic, please see What Every Programmer Absolutely, Positively Needs To Know About Encodings And Character Sets To Work With Text.
I have a little utility which is sometimes helpful in seeing the difference between character encodings. http://sodved.awardspace.info/unicode.pl. If you paste in ö into the Raw (UTF-8) field you will see that it is represented by different byte sequences in different encodings. And as the other two good answers describe, some non-unicode encodings cannot represent it at all.

What are some common character encodings that a text editor should support?

I have a text editor that can load ASCII and Unicode files. It automatically detects the encoding by looking for the BOM at the beginning of the file and/or searching the first 256 bytes for characters > 0x7f.
What other encodings should be supported, and what characteristics would make that encoding easy to auto-detect?
Definitely UTF-8. See http://www.joelonsoftware.com/articles/Unicode.html.
As far as I know, there's no guaranteed way to detect this automatically (although the probability of a mistaken diagnosis can be reduced to a very small amount by scanning).
I don't know about encodings, but make sure it can support the multiple different line ending standards! (\n vs \r\n)
If you haven't checked out Mich Kaplan's blog yet, I suggest doing so: http://blogs.msdn.com/michkap/
Specifically this article may be useful: http://www.siao2.com/2007/04/22/2239345.aspx
There is no way how you can detect an encoding. The best thing you could do is something like IE and depend on letter distributions in different languages, as well as standard characters for a language. But that's a long shot at best.
I would advise getting your hands on some large library of character sets (check out projects like iconv) and make all of those available to the user. But don't bother auto-detecting. Simply allow the user to select his preference of a default charset, which itself would be UTF-8 by default.
Latin-1 (ISO-8859-1) and its Windows extension CP-1252 must definitely be supported for western users. One could argue that UTF-8 is a superior choice, but people often don't have that choice. Chinese users would require GB-18030, and remember there are Japanese, Russians, Greeks too who all have there own encodings beside UTF-8-encoded Unicode.
As for detection, most encodings are not safely detectable. In some (like Latin-1), certain byte values are just invalid. In UTF-8, any byte value can occur, but not every sequence of byte values. In practice, however, you would not do the decoding yourself, but use an encoding/decoding library, try to decode and catch errors. So why not support all encodings that this library supports?
You could also develop heuristics, like decoding for a specific encoding and then test the result for strange characters or character combinations or frequency of such characters. But this would never be safe, and I agree with Vilx- that you shouldn't bother. In my experience, people normally know that a file has a certain encoding, or that only two or three are possible. So if they see you chose the wrong one, they can easily adapt. And have a look at other editors. The most clever solution is not always the best, especially if people are used to other programs.
UTF-16 is not very common in plain text files. UTF-8 is much more common because it is back compatible with ASCII and is specified in standards like XML.
1) Check for BOM of various Unicode encodings. If found, use that encoding.
2) If no BOM, check if file text is valid UTF-8, reading until you reach a sufficient non-ASCII sample (since many files are almost all ASCII but may have a few accented characters or smart quotes) or the file ends. If valid UTF-8, use UTF-8.
3) If not Unicode it's probably current platform default codepage.
4) Some encodings are easy to detect, for example Japanese Shift-JIS will have heavy use of the prefix bytes 0x82 and 0x83 indicating hiragana and katakana.
5) Give user option to change encoding if program's guess turns out to be wrong.
Whatever you do, use more than 256 bytes for a sniff test. It's important to get it right, so why not check the whole doc? Or at least the first 100KB or so.
Try UTF-8 and obvious UTF-16 (lots of alternating 0 bytes), then fall back to the ANSI codepage for the current locale.