Exception, Return, Serializable, - return-value

How is (throw Exception) and (return value) implemented in a language such as Java or C#? I want to know the mechanism of how its support is included in a language and not just the usage of try { .... } catch (Exception) {}.
We know when we call a function i.e.
public void doSomething() {
....
....
return;
}
Then on the call is put on the stack and when the method returns the call to doSomething on stack pops out.
What happens in a case where the return statement returns with a value, say return 4;,
the call to doSomething() on the stack pops out, and the next statement on Prog counter got processed? What happened with the returned value? Where did it get saved and how is it utilized?
Similarly in the case of an exception throw, the throw ex; statement finds on the stack the appropriate catch statement, and until it finds it, it keeps popping things out of the stack... How does this mechanism work?

Take a look at this article and see if it helps. It talks about the SEH underpinnings of the .NET (C#) exception system.
EDIT:
If you are asking "How does calling methods with parameters and return values work in something like C# and Java", then look at this article.
At a really low level (what I am thinking you are asking), When you make a call to a method, you push your params onto the stack, then run the function, then pop the return value of the stack into a register and then process off of it, like the following:
Return from method (assembly code)
pop esx - Pop value off stack and store it in the EAX register
jz esx A01h - If the EAX register is zero, jump to this location.
EDIT #2:
In the case of an exception, the managed framework (Java, .NET, etc.) starts to unwind the stack one step at a time looking for a "catch" or "finally" block that can handle the error. It keeps doing this until it finds some block of code that can handle it or it runs out of code and just terminates the program. To understand how all this works at a stack level depends on which managed framework you are talking about, but the first article above combined with this article will give you the deeper view.

Related

How do I make a dtrace probe only execute when a certain function is in the stack

OK, this is "fun." I'm trying to figure out a weird thread timeout in a program, and need to look at what is happening when pthread_cond_timedwait() returns on Solaris... But... Only when a certain wrapper function or functions are being called (call them foo_lock and foo_unlock)...
I don't think I can use this answer because the function I'm looking at is at least 2-3 hops up in the stack: dtrace execute action only when the function returns to a specific module
One of the weird behaviors is that I see the right parent in tracing entry, but not exit, when I use a return probe... This could be a buffering issue though. Have to dig...

Can a matlab function called within a script cause the script to break?

I am running a script which calls a function, and if a certain condition is met, inside the function, I want the whole thing just to terminate (and by that I do not mean I want to close matlab using exit). Is that possible? I know I can use return or break to return to the script, however I want the script to stop as well if this condition is met.
The only function I know of that does this is error. This throws an exception, and, if no exception handlers with try and catch are installed in the calling script, will terminate and return to command prompt. Which is what you want, as far as I understand. It prints an error message though. This could be suppressed if you guard all code in the top-level script with a try catch handler. However this will have to be specific to the one error and it makes debugging ("stop-on-error") much more difficult.
The thing is that the only use case I see for this behavior (termination of whole program on certain event) is when a non recoverable error occurs, and in that case printing an error message is indeed appropriate.
In case the script is successful termination of the whole program is not really the right way. All functions should return to give the upper layers of the code to perform some clean-up action, like saving the output data or so.

Unexpected behavior in nested recursive function

I have some code that behaves rather strangely.
I am inside a function, and I declare a nested one, which should check if something isn't okay. If it's not then it should sleep for five seconds and call itself again.
sub stop {
sub wait_for_stop {
my $vm_view = shift;
if ( $vm_view->runtime->powerState->val ne "poweredOff" ) {
debug("...");
sleep(5);
wait_for_stop();
}
}
debug("Waiting for the VM to stop");
wait_for_stop( #$vm_views[0] );
}
So, in the call that results in the recursion inside the if condition, if I put the parameter (as the function definition expects it), like this:
wait_for_stop($vm_view);
I get an infinite loop.
If I leave it without a parameter, as in the code example above, it works as expected.
Shouldn't $vm_view in the subsequent calls be empty? Or the last used value ($vm_view->runtime->powerState->val)? Either case should result in unexpected behavior and error.
But it works without any parameter. So why is that? Is there something I've missed from perldoc?
EDIT1: Actually, the value of $vm_views does get changed, so that's not the reason for the infinite loop.
General clarifications
I am using the VMware SDK. The $vm_views object contains the VM details. I am polling one of its methods to detect a change, in this particular case, I need to know when the machine is turned off. So, for lack of a better way, I make a call every 5 seconds until the value is satisfactory.
My purpose is to stop the VM, make modifications that can only be made while it's off, and then launch it.
Actual question
When I don't pass a parameter, the block works as expected – it waits until the value is poweredOff (the VM is off), and continues, which doesn't make much sense, at least to me.
In the case I put $vm_view as parameter, I get an infinite loop (the value will still get changed, since I'm calling a method).
So I am wondering why the function works, when after the first call, $vm_view should be undef, and therefore, be stuck in an infinite loop? [undef ne "poweredOff" -> sleep -> recursion till death]
And why, when I pass the expected value, it gets stuck?
PS: To all those saying my recursion is weird and useless in this scenario – due to a myriad of reasons, I need to use such a format (it's better suited for my needs, since, after I get this bit working, I'll modify it to add various stuff and reuse it, and, for what I have in mind, a function seems to be the best option).
You should always look at your standard tools before going for something a little more exotic like recursion. All you need here is a while loop
It's also worth noting that #$vm_views[0] should be $$vm_views[0]) or, better, $vm_views->[0]. And you don't gain anything by defining a subroutine inside another one -- the effect is the same as if it was declared separately afterwards
An infinite loop is what I would expect if $vm_view->runtime->powerState->val never returns poweredOff, and the code below won't fix that. I don't see any code that tells the VM to stop before you wait for the status change. Is that correct?
I don't understand why you say that your code works correctly when you call wait_for_stop without any parameters. You will get the fatal error
Can't call method "runtime" on an undefined value
and your program will stop. Is what you have posted the real code?
This will do what you intended. I also think it's easier to read
use strict;
use warnings;
my $vm_views;
sub stop {
debug ("Waiting for the VM to stop");
my $vm_view = $vm_views->[0];
while ( $vm_view->runtime->powerState->val ne 'poweredOff' ) {
debug('...');
sleep 5;
}
}
I think you would have a better time not calling wait_for_stop() recursively. This way might serve you better:
sub stop
{
sub wait_for_stop
{
my $vm_view = shift;
if ($vm_view->runtime->powerState->val ne "poweredOff")
{
debug("...");
#sleep(5);
#wait_for_stop();
return 0;
}
return 1;
}
debug ("Waiting for the VM to stop");
until(wait_for_stop(#$vm_views[0]))
{
sleep(5);
}
}
Your old way was rather confusing and I don't think you were passing the $vm_view variable through to the recursive subroutine call.
Update:
I tried reading it here:
https://www.vmware.com/support/developer/viperltoolkit/doc/perl_toolkit_guide.html#step3
It says:
When the script is run, the VI Perl Toolkit runtime checks the
environment variables, configuration file contents, and command-line
entries (in this order) for the necessary connection-setup details. If
none of these overrides are available, the runtime uses the defaults
(see Table 1 ) to setup the connection.
So, the "runtime" is using the default connection details even when a vm object is not defined? May be?
That still doesn't answer why it doesn't work when the parameter is passed.
You need to understand the VM SDK better. You logic for recursion and usage of function parameters are fine.
Also, the page: https://www.vmware.com/support/developer/viperltoolkit/doc/perl_toolkit_guide.html
says -
VI Perl Toolkit views have several characteristics that you should
keep in mind as you write your own scripts. Specifically, a view:
Is a Perl object
Includes properties and methods that correlate to the properties and
operations of the server-side managed object
Is a static copy of one or more server-side managed objects, and as
such (static), is not updated automatically as the state of objects
on the server changes.
So what the "vm" function returns is a static copy, which can be updated from the script. May be it is getting updated when you make a call while passing the $vm_view?
Old Answer:
Problem is not what you missed from Perl docs. The problem is with your understanding of recursion.
The purpose of recursion is to keep running until $vm_view->runtime->powerState->val becomes "PoweredOff" and then cascade back. If you don't update the value, it keeps running forever.
When you say:
I get an infinite loop.
Are you updating the $vm_view within the if condition?
Otherwise, the variable is same every time you call the function and hence you can end up in infinite loop.
If I leave it without a parameter, as in the code example above, it
works as expected.
How can it work as expected? What is expected? There is no way the function can know what value your $vm_view is being updated with.
I have simplified the code, added updating a simple variable (similar to your $vm_view) and tested. Use this to understand what is happening:
sub wait_for_stop
{
my $vm_view = shift;
if ($vm_view < 10){
print "debug...\n";
sleep(5);
$vm_view++; // update $vm_view->runtime->powerState->val here
// so that it becomes "poweredOff" at some point of time
// and breaks the recursion
wait_for_stop($vm_view);
}
}
wait_for_stop(1);
Let me know in comments how the variable is being updated and I will help resolve.

Exception handling in entire application

I have a few doubts regarding exception handling in iPhone. Here are they:
Suppose I have a chain of methods which are being called one after the other, that is, method A calls method B, which in turn calls method C, which calls method D. Which is the best place to put my try-catch block (is it method A or B or C or D or all of them). Also, I need to display an alert to user that an exception has occured and then, I want to log this exception to my server. So, if I am writing my try - catch block in all of this methods and if an exception occurs in method D; then I think the alert will be displayed 4 times and the web service for logging will also be called 4 times (till control reaches to catch block of method A). So, should I just use #throw; in catch block of method B, C and D and write my logic in catch block of method A (top level method) or should I avoid writing try - catch at all in methods B,C and D.
I need some sort of error code from the exception (because my web service needs parameters error-code and description). Is it possible to convert an exception to error or will I need to hard-code this code?
I had read somewhere about NSSetUncaughtExceptionHandler. And I think, if I can set this handler (in appDidFinishLaunching method of app delegate) and in the handler method, if I show to user some alert and call the web service; then I need not write try - catch block in each of my methods, in each of my classes. Am I right??
If an exception has occured and I have written either a try - catch block or NSSetUncaughtExceptionHandler, then will my app continue running or it will not respond to any of the user events. (I am sure it will handle the crash. What I want to know is whether it will hang)
Someone please enlighten me on this EXCEPTION TOPIC.
0) Avoid exceptions in Cocoa. They are generally non-recoverable. You might catch them for your own error reporting, but it's generally unsafe to assume you can recover from them.
1) If you need to catch, catch it immediately. Don't write your own throws -- instead, convert it to something like an NSError and pass that around. NSError can contain all the information you need to display or send an error code as well as a localized message.
2) You cannot convert an NSException into an NSError (directly) because an NSException does not have all the properties an NSError has - it is a different data representation. For one, an error code is not available. Two, the description is not localized. The best you can do is to create an error code and domain, then use the properties you need from the NSException and store that in an NSError. This could look something like the following:
// error checking omitted
extern NSString* const MONExceptionHandlerDomain;
extern const int MONNSExceptionEncounteredErrorCode;
NSError * NewNSErrorFromException(NSException * exc) {
NSMutableDictionary * info = [NSMutableDictionary dictionary];
[info setValue:exc.name forKey:#"MONExceptionName"];
[info setValue:exc.reason forKey:#"MONExceptionReason"];
[info setValue:exc.callStackReturnAddresses forKey:#"MONExceptionCallStackReturnAddresses"];
[info setValue:exc.callStackSymbols forKey:#"MONExceptionCallStackSymbols"];
[info setValue:exc.userInfo forKey:#"MONExceptionUserInfo"];
return [[NSError alloc] initWithDomain:MONExceptionHandlerDomain code:MONNSExceptionEncounteredErrorCode userInfo:info];
}
#catch (NSException * exc) {
NSError * err = NewNSErrorFromException(exc);
...
}
If the APIs you use throw exceptions you are expected to catch and recover from (e.g. not truly exceptional cases), then yes, you could catch and attempt to continue. Unfortunately, anybody that writes exceptions in Cocoa with the intent that you will catch them probably does not understand the issues well enough to implement a solid unwind implementation (e.g. even if it produces leaks, it's not solid).
3) That's really not the time or place to display an alert. If you install a top level exception handler (via NSSetUncaughtExceptionHandler) - You should simply log a message -- then the exception handler will abort. Your app is in an unstable state -- continuing is worse than aborting. You may want to send these custom messages home, it's best to do so at the next launch of your app.
4) In the majority of cases, your app is in an unstable state and you should not continue. But, to actually answer it for those corner cases: "Yes, you can recover and continue when you catch, but you should only attempt to recover and continue when the throwing API states that recovery is supported. If the problem is beyond your control, and the problem is not exceptional (e.g. file not found), and the vendor really expects you to continue, then I would have to assume that they expect you to continue, even though it really isn't (100% safe).". Do not attempt to recover/continue from within your top level exception handler (the program will abort after it returns). If you want to be very fancy and present that immediately on OSX, another process would be best. If you are calling through a pure C++ interface, then the unwinding is well defined, and the need to catch is necessary - do continue if it is recoverable. Exceptions in C++ can be recoverable and well defined - they are also used quite extensively (including less than exceptional conditions).
(IMO...) Exceptions in ObjC should not have been introduced, and any method that throws from system or third party libraries should be deprecated. They don't unwind well, or in a well defined manner. As well, unwinding flows against normal Cocoa program flow. That means that touching any objc object's memory/relations that was in mutation at the time of the throw and which lies between the throw and the catch is as good as undefined behaviour. Problem is - you have no idea what that memory is (in most cases, and within reasonable maintenance time). C++ exceptions are well defined, and they unwind correctly (e.g. destructors are called) - but trying to continue in an ObjC context is ignoring any consequences of undefined behavior. IMO, they should only exist for ObjC++ (because C++ requires them).
In an ideal world, your ObjC programs and the libraries you use would not use exceptions (at all). Since you use libraries that do throw (including Cocoa), install a top level exception handler only if you need some special information about the error. Where the API mandates that you could expect an exception thrown due to circumstances beyond your control and you are expected to recover, then write a catch but immediately convert that logic to normal program flow (e.g. NSError) - you never need to write your own throw. -[NSArray objectAtIndex: and "object does not respond to selector" are examples of programmer errors - they should not be caught, but the program should be corrected.

Obj C: Creating a standard try-catch-block for use through the application

I am building a app with many different parts which access remote api calls (both my own, and others). There are many errors that might happen, and to exacerbate the problem, different libraries handle these errors differently.
Essentially, i would like to use the same error handling blocks for all these remote calls.
This is how i would do it with Ruby, but i am not that sure how to manipulate objective c in the same manner
//universal function to handle standard remote errors across errors
def universal_handling
begin
yield
rescue Exception => e
// handle different exceptions accordingly
// allow crash if unexpected exception
end
end
//how i would use the above block
universal_handling{ //any of my remote call here }
So, i have 2 questions (sample code very much appreciated)
How would I write the equivalent code in Objective-C? It is critical that I can use the same handling block throughout the app
In iOS dev, is this good practice?
Thanks for any help rendered! Error handling can be a major pain in the ass, so i do want to get this right early on =)
Notes:
Blocks are perfectly fine. I am not intending to support < 4.2 versions.
I read most of the articles out there, but none answers how you can use blocks to write "wrappers" for a specific set of calls.
You can do something very similar with blocks:
typedef void(^WrappableBlock)(void);
^(WrappableBlock block) {
#try {
block();
}
#catch(...)
}
//handle exception
}
}
However, it's very important to realize that the Cocoa (and CocoaTouch) libraries are not exception-safe. Throwing an exception through Cocoa frameworks will lead to all sorts of problems as the frameworks will not properly handle or clean up from the exceptions, leaving your application in a possibly inconsistent state. The correct Cocoa-style is to use NSError and return flags to indicate error conditions. This is neither better nor worse than using exceptions, just a different philosophy.
To do something similar to your universal_handling with NSError is not quite so straight forward because it will require that anything you call comply with the NSError pattern. That said:
typedef BOOL(^WrappableBlock)(NSError**);
^(WrappableBlock block, NSError **err) {
BOOL success = block(err);
if(!success) {
// handle error
}
return success;
}
would wrap any method that takes just an NSError** and returns a BOOL to indicate the presence of an error. Obviously the utility of this wrapper is limited as you'll have to wrap any interesting method in an other block to handle any other parameters. Of course, since it's the NSError** pattern, you can always just handle the errors when/where you want and pass NULL as the NSError** parameter where you don't care (ignoring the return value).
One final note: if you are using libraries that may throw exceptions, you must catch those exceptions within the scope of the library call and handle them. Do not let the exceptions propagate as they might then propagate through Cocoa framework code. Thus, the utility of the universal_handling block you propose is limited.
I would suggest you this nice cocoawithlove article that explains how to handle unhandled exceptions in Objective-C and also how to recover from an exception instead of "just" crashing. That could be a good alternative to what you are looking for.
I'm afraid that Objective-C not being as dynamic as ruby, that is a bit harder to do.
Would love to see a good block based implementation too, if that's possible, even If I'm not using them yet, because of previous version compatibility.