Performance issues scaling multiple CALayers - iphone

I have two CALayer subclasses, each with their own drawLayer:(CALayer *)layer inContext:(CGContextRef)ctx delegate. They are both simple layers (some single color shapes drawn with CG paths), but I need to scale about 12 instances simultaneously, and I'm having some issues with frame rates. I marked all of the layers as opaque to try to free up some cycles, and have tried using implicit and explicit basic animations (on the bounds property itself), as well as assigning CA3DTransform matricies to the transform property.
Does anyone know of a good way to quickly resize objects while maintaining a good frame-rate?

This doesn't sound to be beyond the capabilities of the iPhone.
One solution might be to render them to an image and scale that? This is (more or less) what CoreAnimation would do. It sounds like you have a defect though - maybe you should post your code and people could look at it.
Where are you performing the redraw and what are you redrawing?

I agree with Roger.
Check how often your drawLayer:inContext: methods (or whatever you use to draw) are being called. A simple NSLog can accomplish that. If they are being called constantly, consider Roger's idea of rendering to an image and scaling that.
You will likely have to fire up the performance tools to find your bottleneck.

Related

to drawRect or not to drawRect (when should one use drawRect/Core Graphics vs subviews/images and why?)

To clarify the purpose of this question: I know HOW to create complicated views with both subviews and using drawRect. I'm trying to fully understand the when's and why's to use one over the other.
I also understand that it doesn't make sense to optimize that much ahead of time, and do something the more difficult way before doing any profiling. Consider that I'm comfortable with both methods, and now really want a deeper understanding.
A lot of my confusion comes from learning how to make table view scroll performance really smooth and fast. Of course the original source of this method is from the author behind twitter for iPhone (formerly tweetie). Basically it says that to make table scrolling buttery smooth, the secret is to NOT use subviews, but instead do all the drawing in one custom uiview. Essentially it seems that using lots of subviews slows rendering down because they have lots of overhead, and are constantly re-composited over their parent views.
To be fair, this was written when the 3GS was pretty brand spankin new, and iDevices have gotten much faster since then. Still this method is regularly suggested on the interwebs and elsewhere for high performance tables. In fact it's a suggested method in Apple's Table Sample Code, has been suggested in several WWDC videos (Practical Drawing for iOS Developers), and many iOS programming books.
There are even awesome looking tools to design graphics and generate Core Graphics code for them.
So at first I'm lead to believe "there’s a reason why Core Graphics exists. It’s FAST!"
But as soon as I think I get the idea "Favor Core Graphics when possible", I start seeing that drawRect is often responsible for poor responsiveness in an app, is extremely expensive memory wise, and really taxes the CPU. Basically, that I should "Avoid overriding drawRect" (WWDC 2012 iOS App Performance: Graphics and Animations)
So I guess, like everything, it's complicated. Maybe you can help myself and others understand the When's and Why's for using drawRect?
I see a couple obvious situations to use Core Graphics:
You have dynamic data (Apple's Stock Chart example)
You have a flexible UI element that can't be executed with a simple resizable image
You are creating a dynamic graphic, that once rendered is used in multiple places
I see situations to avoid Core Graphics:
Properties of your view need to be animated separately
You have a relatively small view hierarchy, so any perceived extra effort using CG isn't worth the gain
You want to update pieces of the view without redrawing the whole thing
The layout of your subviews needs to update when the parent view size changes
So bestow your knowledge. In what situations do you reach for drawRect/Core Graphics (that could also be accomplished with subviews)? What factors lead you to that decision? How/Why is drawing in one custom view recommended for buttery smooth table cell scrolling, yet Apple advises drawRect against for performance reasons in general? What about simple background images (when do you create them with CG vs using a resizable png image)?
A deep understanding of this subject may not be needed to make worthwhile apps, but I don't love choosing between techniques without being able to explain why. My brain gets mad at me.
Question Update
Thanks for the information everyone. Some clarifying questions here:
If you are drawing something with core graphics, but can accomplish the same thing with UIImageViews and a pre-rendered png, should you always go that route?
A similar question: Especially with badass tools like this, when should you consider drawing interface elements in core graphics? (Probably when the display of your element is variable. e.g. a button with 20 different color variations. Any other cases?)
Given my understanding in my answer below, could the same performance gains for a table cell possibly be gained by effectively capturing a snapshot bitmap of your cell after your complex UIView render's itself, and displaying that while scrolling and hiding your complex view? Obviously some pieces would have to be worked out. Just an interesting thought I had.
Stick to UIKit and subviews whenever you can. You can be more productive, and take advantage of all the OO mechanisms that should things easier to maintain. Use Core Graphics when you can't get the performance you need out of UIKit, or you know trying to hack together drawing effects in UIKit would be more complicated.
The general workflow should be to build the tableviews with subviews. Use Instruments to measure the frame rate on the oldest hardware your app will support. If you can't get 60fps, drop down to CoreGraphics. When you've done this for a while, you get a sense for when UIKit is probably a waste of time.
So, why is Core Graphics fast?
CoreGraphics isn't really fast. If it's being used all the time, you're probably going slow. It's a rich drawing API, which requires its work be done on the CPU, as opposed to a lot of UIKit work that is offloaded to the GPU. If you had to animate a ball moving across the screen, it would be a terrible idea to call setNeedsDisplay on a view 60 times per second. So, if you have sub-components of your view that need to be individually animated, each component should be a separate layer.
The other problem is that when you don't do custom drawing with drawRect, UIKit can optimize stock views so drawRect is a no-op, or it can take shortcuts with compositing. When you override drawRect, UIKit has to take the slow path because it has no idea what you're doing.
These two problems can be outweighed by benefits in the case of table view cells. After drawRect is called when a view first appears on screen, the contents are cached, and the scrolling is a simple translation performed by the GPU. Because you're dealing with a single view, rather than a complex hierarchy, UIKit's drawRect optimizations become less important. So the bottleneck becomes how much you can optimize your Core Graphics drawing.
Whenever you can, use UIKit. Do the simplest implementation that works. Profile. When there's an incentive, optimize.
The difference is that UIView and CALayer essentially deal in fixed images. These images are uploaded to the graphics card (if you know OpenGL, think of an image as a texture, and a UIView/CALayer as a polygon showing such a texture). Once an image is on the GPU, it can be drawn very quickly, and even several times, and (with a slight performance penalty) even with varying levels of alpha transparency on top of other images.
CoreGraphics/Quartz is an API for generating images. It takes a pixel buffer (again, think OpenGL texture) and changes individual pixels inside it. This all happens in RAM and on the CPU, and only once Quartz is done, does the image get "flushed" back to the GPU. This round-trip of getting an image from the GPU, changing it, then uploading the whole image (or at least a comparatively large chunk of it) back to the GPU is rather slow. Also, the actual drawing that Quartz does, while really fast for what you are doing, is way slower than what the GPU does.
That's obvious, considering the GPU is mostly moving around unchanged pixels in big chunks. Quartz does random-access of pixels and shares the CPU with networking, audio etc. Also, if you have several elements that you draw using Quartz at the same time, you have to re-draw all of them when one changes, then upload the whole chunk, while if you change one image and then let UIViews or CALayers paste it onto your other images, you can get away with uploading much smaller amounts of data to the GPU.
When you don't implement -drawRect:, most views can just be optimized away. They don't contain any pixels, so can't draw anything. Other views, like UIImageView, only draw a UIImage (which, again, is essentially a reference to a texture, which has probably already been loaded onto the GPU). So if you draw the same UIImage 5 times using a UIImageView, it is only uploaded to the GPU once, and then drawn to the display in 5 different locations, saving us time and CPU.
When you implement -drawRect:, this causes a new image to be created. You then draw into that on the CPU using Quartz. If you draw a UIImage in your drawRect, it likely downloads the image from the GPU, copies it into the image you're drawing to, and once you're done, uploads this second copy of the image back to the graphics card. So you're using twice the GPU memory on the device.
So the fastest way to draw is usually to keep static content separated from changing content (in separate UIViews/UIView subclasses/CALayers). Load static content as a UIImage and draw it using a UIImageView and put content generated dynamically at runtime in a drawRect. If you have content that gets drawn repeatedly, but by itself doesn't change (I.e. 3 icons that get shown in the same slot to indicate some status) use UIImageView as well.
One caveat: There is such a thing as having too many UIViews. Particularly transparent areas take a bigger toll on the GPU to draw, because they need to be mixed with other pixels behind them when displayed. This is why you can mark a UIView as "opaque", to indicate to the GPU that it can just obliterate everything behind that image.
If you have content that is generated dynamically at runtime but stays the same for the duration of the application's lifetime (e.g. a label containing the user name) it may actually make sense to just draw the whole thing once using Quartz, with the text, the button border etc., as part of the background. But that's usually an optimization that's not needed unless the Instruments app tells you differently.
I'm going to try and keep a summary of what I'm extrapolating from other's answers here, and ask clarifying questions in an update to the original question. But I encourage others to keep answers coming and vote up those who have provided good information.
General Approach
It's quite clear that the general approach, as Ben Sandofsky mentioned in his answer, should be "Whenever you can, use UIKit. Do the simplest implementation that works. Profile. When there's an incentive, optimize."
The Why
There are two main possible bottlenecks in an iDevice, the CPU and GPU
CPU is responsible for the initial drawing/rendering of a view
GPU is responsible for a majority of animation (Core Animation), layer effects, compositing, etc.
UIView has a lot of optimizations, caching, etc, built in for handling complex view hierarchies
When overriding drawRect you miss out on a lot of the benefits UIView's provide, and it's generally slower than letting UIView handle the rendering.
Drawing cells contents in one flat UIView can greatly improve your FPS on scrolling tables.
Like I said above, CPU and GPU are two possible bottlenecks. Since they generally handle different things, you have to pay attention to which bottleneck you are running up against. In the case of scrolling tables, it's not that Core Graphics is drawing faster, and that's why it can greatly improve your FPS.
In fact, Core Graphics may very well be slower than a nested UIView hierarchy for the initial render. However, it seems the typical reason for choppy scrolling is you are bottlenecking the GPU, so you need to address that.
Why overriding drawRect (using core graphics) can help table scrolling:
From what I understand, the GPU is not responsible for the initial rendering of the views, but is instead handed textures, or bitmaps, sometimes with some layer properties, after they have been rendered. It is then responsible for compositing the bitmaps, rendering all those layer affects, and the majority of animation (Core Animation).
In the case of table view cells, the GPU can be bottlenecked with complex view hierarchies, because instead of animating one bitmap, it is animating the parent view, and doing subview layout calculations, rendering layer effects, and compositing all the subviews. So instead of animating one bitmap, it is responsible for the relationship of bunch of bitmaps, and how they interact, for the same pixel area.
So in summary, the reason drawing your cell in one view with core graphics can speed up your table scrolling is NOT because it's drawing faster, but because it is reducing the load on the GPU, which is the bottleneck giving you trouble in that particular scenario.
I am a game developer, and I was asking the same questions when my friend told me that my UIImageView based view hierarchy was going to slow down my game and make it terrible. I then proceeded to research everything I could find about whether to use UIViews, CoreGraphics, OpenGL or something 3rd party like Cocos2D. The consistent answer I got from friends, teachers, and Apple engineers at WWDC was that there won't be much of a difference in the end because at some level they are all doing the same thing. Higher-level options like UIViews rely on the lower level options like CoreGraphics and OpenGL, just they are wrapped in code to make it easier for you to use.
Don't use CoreGraphics if you are just going to end up re-writing the UIView. However, you can gain some speed from using CoreGraphics, as long as you do all your drawing in one view, but is it really worth it? The answer I have found is usually no. When I first started my game, I was working with the iPhone 3G. As my game grew in complexity, I began to see some lag, but with the newer devices it was completely unnoticeable. Now I have plenty of action going on, and the only lag seems to be a drop in 1-3 fps when playing in the most complex level on an iPhone 4.
Still I decided to use Instruments to find the functions that were taking up the most time. I found that the problems were not related to my use of UIViews. Instead, it was repeatedly calling CGRectMake for certain collision sensing calculations and loading image and audio files separately for certain classes that use the same images, rather than having them draw from one central storage class.
So in the end, you might be able to achieve a slight gain from using CoreGraphics, but usually it will not be worth it or may not have any effect at all. The only time I use CoreGraphics is when drawing geometric shapes rather than text and images.

What is the exact performance cost when mixing OpenGL with UIKit in iPhone?

I need to make a design decision of how to approach an app which needs to render few 3D objects on top of an image texture.
Result needs to be rendered and saved as an UIImage.
Graphical design (client) expects standard UIKit controls to manipulate 3D world.
OpenGL view (CAEAGLLayer layer) needs to be inside UIScrollView for cheap and natural scroll and zooming implementation.
There are just few extra controls to manipulate rotation scale and transition of the few 3D objects.
There is not many triangles expected (100-200 at most) and 2-3 textures (1 mask). It does not even have to be refreshed constantly, just when some transformations and zoom changes.
CAEAGLLayer does not need to be opaque.
I would go with Core Animation solution but rendering 3D transformed CALayers to CGContextRef is not supported (neither is masking).
What is real performance cost when putting CAEAGLLayer inside UIScrollView and mixing it with few UIKit views?
How much triangles per second can I expect to be rendered with smooth frame rate (30fps will do), so I can make the best decision possible?
I know there are similar questions out there already, but none of the answers provides specific numbers, which could help with estimating expected rendering results.
Per Allan Schaffer, who gives the WWDC and WWDC on tour OpenGL speeches, OpenGL itself is not so much a special case — it's that anything that changes will cause everything on top of it to be recomposited. I spoke to him specifically about an app with a live updating video view underneath a live updating OpenGL view and he said that sort of thing is the pathological worst case. It's generally not that expensive to throw a few quite static views on top, such as using a UILabel to display the current score over an OpenGL game.
In your case, I think you can probably largely avoid the problem. Don't put the GL view inside the scroll view, but rather make the scroll view non-opaque and put the GL view behind it. Catch scrollViewDidScroll: (and the corresponding zoom messages) and make related OpenGL adjustments. I can speak from experience and say I've done exactly that on an iPad 1 with no performance issues. Particularly for the sort of model you're talking about I don't imagine a problem.

How does CATiledLayer know when to provide a new tile?

Because of various reasons, I am considering to make my own implementation of CATiledLayer. I have done some investigation, but I don't seem to be able to figure out how CATiledLayer knows which tile to provide.
For example, when you scroll the layer, setPosition: or setBounds: are never called. It looks like the background thread just calls drawLayer:inContext: of the delegate out of the blue without any triggers.
I have found out that CATiledLayer calls setContent: with an instance of "CAImageProvider", and the all calls to drawLayer:inContext: originate from that class. So probably that one is the key in determining what tile to draw. But I cannot find any documentation on that class.
So... does anybody know how this is working, and how I might be able to override it?
As for the disadvantages of CATiledLayer:
it always uses screen resolution (or x2, x4, etc); you cannot set it to the native resolution of your source images
you cannot specify any other scaling factor than 2
you have to specify the levelsOfDetail and levelsOfDetailBias, for which I see no implementation reason at all. If you have content that is infinitely scalable, like fractals, then this is very limiting.
most importantly: if you restrict it to zooming in only one direction (I do that by forcing the scale factor of one direction to 1 in setTransform:), it acts all weird
In drawLayer:inContext:, you can get the bounding box using CGContextGetClipBoundingBox. CGContextGetCTM should give you information about the current resolution.

Improving drawing performance on custom UIView

I have a custom UIView which is composed of many images, their positions are changing in response to the user touch.
The view must track the user touch and i'm experiencing a performance bottleneck in the drawing of such view, preventing me to follow the input in realtime.
At the beginning i was drawing everything in the [UIView drawRect:] method and of course it was way too slow because everything was redrawn even if not necessary.
Then, i used more CALayers to update only the layer that was changing and this gave me much better responsiveness.
But still, when i have to draw the same image many times on a layer it takes up to 500ms.
Since the images are placed at fixed positions it there a way to pre-draw them? Should i consider putting them in many CALayers and just hide/show them?
Also, i don't understand why a [CALayer setNeedsDisplayInRect:] exists but the delegate has (apparently) no way to know what the invalid rect is to optimize the drawing.
Solution
Following the advice in the answer I finally created many CALayers for the images and set the contents property the first time the layer was being shown. This is a lazy-loading compromise: in a first attempt i set the contents of every layer at the creation time but this caused to pre-draw any possible image on the program launch, freezing the application for seconds.
From the documentation for -[CALayer drawInContext:]:
Default implementation does nothing. The context may be clipped to protect valid layer content. Subclasses that wish to find the actual region to draw can call CGContextGetClipBoundingBox. Called by the display method when the contents property is being updated.
The default implementation of display calls drawInContext: on an automatically-created context; presumably setting the bounding box as well (which is presumably passed to drawRect:).
If you're drawing several static images, I'd just stick each one in its own UIView; I don't think the overhead is that big (if it is, the CALayer overhead should be smaller). If they all animate, I'd definitely use UIView/CALayer. If some of them don't animate (much) and you notice significant slowness, you can pre-render those. It's a trade-off between rendering in drawRect: (or similar) and layer compositing on the GPU, but in general I'd assume that the latter is much faster.

How do I use CALayer with the iPhone?

Currently, I have a UIView subclass that "stamps" a single 2px by 2px CGLayerRef across the screen, up to 160 x 240 times.
I currently animate this by moving the UIView "up" the screen 2 pixels (actually, a UIImageView) and then drawing the next "row".
Would using multiple CALayer layers speed up performance of rendering this animation?
Are there tutorials, sample applications or code snippets for use of CALayer with the iPhone SDK?
The reason I ask is that most of the code snippets I find that demonstrate simple examples of CALayer employ method calls that do not work with the iPhone SDK. I appreciate any advice or pointers.
Okay, well, if you want something that has some good examples of CA good that draws things like that and works on the phone, I recommend the GeekGameBoard code that Jens Aflke published (it is an improved version of some Apple demo code).
Based on what you are describing I think you are doing somthing way more complicated than it needs be. My impression is you want basically a static view that you are animating by shifting its position so that it is partially off screen. If you just need to set some static content in your drawRect going through layers is not going to be faster than just calling CGFillRect() with your color. After that you could just use implicit animations and the animator proxy on UIView to move the view. I suspect you could even get rid of the custom drawRect: implementation with a patterned UIColor, but I honestly have not benchmarked the difference between the two.
What CALayer methods are you seeing that don't work on iPhone? Aside from animation features tied to CoreImage I have not noticed much that is missing. The big thing you are likely to notice is that all views are layer backed (so you do not need to do anything special to use layers, you can just grab a UIView's layer through the layer accessors methos), and the coordinate system has a top left origin.
In any event, generally having more things is slower than having fewer things. If you are just repeating the same pattern over and over again you are likely to find the best performance is implementing a custom UIView/CALayer/UIColor that knows how to draw what you want, rather than placing visually identical layers or views next to each other.
Having said that, generally layers are lighter weight than views, so if you have a lot of separate elements that you need to keep logically separated you will find that moving to layers can be a win over using views.
You might want to look at -[UIColor initWithPatternImage:] depending on exactly what you are trying to do. If you are using this two pixel pattern as a background color you could just make a UIColor that draws it and set the background.
What CALayer methods are you seeing that don't work on iPhone?
As one example, I tried implementing the grid demo here, without much luck. It looks like CAConstraintLayoutManager and CAConstraint are not available in QuartzCore.h.
In another attempt, I tried a very simple, small 20x20 CALayer object as a sublayer of my UIView's layer property, but that didn't show up.
Right now, I have a custom UIView of which I override the drawRect method. In drawRect I grab a context and render two types of CGLayerRefs:
At "off" cells I draw the background color across the entire 320x480 canvas.
At "on" cells, I either draw a single CGLayerRef across a grid of 320x480 pixels (initialization) or across a 320x2 row (animation).
During animation, I make a UIImageView clip view from 320x478 pixels, and draw a single row. This "pushes" my bitmap up the screen two pixels at a time.
Basically, I'd like to test whether or not using CALayer will accomplish two things:
Make my rendering faster, if CALayer has less overhead than what I'm doing now
Make my animation smoother, by letting me transition a layer up the screen smoothly
Unfortunately, I can't seem to get a basic CALayer working at the moment, and haven't found a good chunk of sample code to look at and play with.