I just started matlab and need to finish this program really fast, so I don't have time to go through all the tutorials.
can someone familiar with it please explain what the following statement is doing.
[Y,I]=max(AS,[],2);
The [] between AS and 2 is what's mostly confusing me. And is the max value getting assigned to both Y and I ?
According to the reference manual,
C = max(A,[],dim) returns the largest elements along the dimension of A specified by scalar dim. For example, max(A,[],1) produces the maximum values along the first dimension (the rows) of A.
[C,I] = max(...) finds the indices of the maximum values of A, and returns them in output vector I. If there are several identical maximum values, the index of the first one found is returned.
I think [] is there just to distinguish itself from max(A,B).
C = max(A,[],dim) returns the largest elements along the dimension of A specified by scalar dim. For example, max(A,[],1) produces the maximum values along the first dimension (the rows) of A.
Also, the [C, I] = max(...) form gives you the maximum values in C, and their indices (i.e. locations) in I.
Why don't you try an example, like this? Type it into MATLAB and see what you get. It should make things much easier to see.
m = [[1;6;2] [5;8;0] [9;3;5]]
max(m,[],2)
AS is matrix.
This will return the largest elements of AS in its 2nd dimension (i.e. its columns)
This function is taking AS and producing the maximum value along the second dimension of AS. It returns the max value 'Y' and the index of it 'I'.
note the apparent wrinkle in the matlab convention; there are a number of builtin functions which have signature like:
xs = sum(x,dim)
which works 'along' the dimension dim. max and min are the oddbal exceptions:
xm = max(x,dim); %this is probably a silent semantical error!
xm = max(x,[],dim); %this is probably what you want
I sometimes wish matlab had a binary max and a collapsing max, instead of shoving them into the same function...
Related
I have a 3D array containing five 3-by-4 slices, defined as follows:
rng(3372061);
M = randi(100,3,4,5);
I'd like to collect some statistics about the array:
The maximum value in every column.
The mean value in every row.
The standard deviation within each slice.
This is quite straightforward using loops,
sz = size(M);
colMax = zeros(1,4,5);
rowMean = zeros(3,1,5);
sliceSTD = zeros(1,1,5);
for indS = 1:sz(3)
sl = M(:,:,indS);
sliceSTD(indS) = std(sl(1:sz(1)*sz(2)));
for indC = 1:sz(1)
rowMean(indC,1,indS) = mean(sl(indC,:));
end
for indR = 1:sz(2)
colMax(1,indR,indS) = max(sl(:,indR));
end
end
But I'm not sure that this is the best way to approach the problem.
A common pattern I noticed in the documentation of max, mean and std is that they allow to specify an additional dim input. For instance, in max:
M = max(A,[],dim) returns the largest elements along dimension dim. For example, if A is a matrix, then max(A,[],2) is a column vector containing the maximum value of each row.
How can I use this syntax to simplify my code?
Many functions in MATLAB allow the specification of a "dimension to operate over" when it matters for the result of the computation (several common examples are: min, max, sum, prod, mean, std, size, median, prctile, bounds) - which is especially important for multidimensional inputs. When the dim input is not specified, MATLAB has a way of choosing the dimension on its own, as explained in the documentation; for example in max:
If A is a vector, then max(A) returns the maximum of A.
If A is a matrix, then max(A) is a row vector containing the maximum value of each column.
If A is a multidimensional array, then max(A) operates along the first array dimension whose size does not equal 1, treating the elements as vectors. The size of this dimension becomes 1 while the sizes of all other dimensions remain the same. If A is an empty array whose first dimension has zero length, then max(A) returns an empty array with the same size as A.
Then, using the ...,dim) syntax we can rewrite the code as follows:
rng(3372061);
M = randi(100,3,4,5);
colMax = max(M,[],1);
rowMean = mean(M,2);
sliceSTD = std(reshape(M,1,[],5),0,2); % we use `reshape` to turn each slice into a vector
This has several advantages:
The code is easier to understand.
The code is potentially more robust, being able to handle inputs beyond those it was initially designed for.
The code is likely faster.
In conclusion: it is always a good idea to read the documentation of functions you're using, and experiment with different syntaxes, so as not to miss similar opportunities to make your code more succinct.
I am currently in the process of writing a custom function to compute the RREF of a given m x n matrix. Since I am a complete newbie to MATLAB, I thought it would be a good idea to sample the built-in rref() function.
While examining the part of code that found "the value and index of largest element in the remainder" of the leading column, I had that:
[p,k] = max(abs(A(i:m,j)))
where m is the number of rows of the matrix, and i=j=1.
I understand that max(abs(A(i:m,j))) gives you the value of the largest element in the leading column - a single scalar answer. However, I cannot understand why it manages to assign two values to [p,k], with kbeing the index number for p. could someone please be kind enough to help?
k is the position in your vector where the maximum value is.
For instance, assume we use the vector [1,2,5,2,1]. There the max value is 5. This value is at the third position in the vector. So [p,k] = max([1,2,5,2,1]);will return p=5 and k=3.
The function will assing values depending on how you call it.
p = max(...
will assign only p
[p,k] = max(...
will assign p and k.
Might sound too simple to you but I need some help in regrad to do all folowings in one shot instead of defining redundant variables i.e. tmp_x, tmp_y:
X= sparse(numel(find(G==0)),2);
[tmp_x, temp_y] = ind2sub(size(G), find(G == 0));
X(:)=[tmp_x, tmp_y];
(More info: G is a sparse matrix)
I tried:
X(:)=ind2sub(size(G), find(G == 0));
but that threw an error.
How can I achieve this without defining tmp_x, tmp_y?
A couple of comments with your code:
numel(find(G == 0)) is probably one of the worst ways to determine how many entries that are zero in your matrix. I would personally do numel(G) - nnz(G). numel(G) determines how many elements are in G and nnz(G) determines how many non-zero values are in G. Subtracting these both would give you the total number of elements that are zero.
What you are doing is first declaring X to be sparse... then when you're doing the final assignment in the last line to X, it reconverts the matrix to double. As such, the first statement is totally redundant.
If I understand what you are doing, you want to find the row and column locations of what is zero in G and place these into a N x 2 matrix. Currently with what MATLAB has available, this cannot be done without intermediate variables. The functions that you'd typically use (find, ind2sub, etc.) require intermediate variables if you want to capture the row and column locations. Using one output variable will give you the column locations only.
You don't have a choice but to use intermediate variables. However, if you want to make this more efficient, you don't even need to use ind2sub. Just use find directly:
[I,J] = find(~G);
X = [I,J];
I'm just learning matlab and I have a snippet of code which I don't understand the syntax of. The x is an n x 1 vector.
Code is below
p = (min(x):(max(x)/300):max(x))';
The p vector is used a few lines later to plot the function
plot(p,pp*model,'r');
It generates an arithmetic progression.
An arithmetic progression is a sequence of numbers where the next number is equal to the previous number plus a constant. In an arithmetic progression, this constant must stay the same value.
In your code,
min(x) is the initial value of the sequence
max(x) / 300 is the increment amount
max(x) is the stopping criteria. When the result of incrementation exceeds this stopping criteria, no more items are generated for the sequence.
I cannot comment on this particular choice of initial value and increment amount, without seeing the surrounding code where it was used.
However, from a naive perspective, MATLAB has a linspace command which does something similar, but not exactly the same.
Certainly looks to me like an odd thing to be doing. Basically, it's creating a vector of values p that range from the smallest to the largest values of x, which is fine, but it's using steps between successive values of max(x)/300.
If min(x)=300 and max(x)=300.5 then this would only give 1 point for p.
On the other hand, if min(x)=-1000 and max(x)=0.3 then p would have thousands of elements.
In fact, it's even worse. If max(x) is negative, then you would get an error as p would start from min(x), some negative number below max(x), and then each element would be smaller than the last.
I think p must be used to create pp or model somehow as well so that the plot works, and without knowing how I can't suggest how to fix this, but I can't think of a good reason why it would be done like this. using linspace(min(x),max(x),300) or setting the step to (max(x)-min(x))/299 would make more sense to me.
This code examines an array named x, and finds its minimum value min(x) and its maximum value max(x). It takes the maximum value and divides it by the constant 300.
It doesn't explicitly name any variable, setting it equal to max(x)/300, but for the sake of explanation, I'm naming it "incr", short for increment.
And, it creates a vector named p. p looks something like this:
p = [min(x), min(x) + incr, min(x) + 2*incr, ..., min(x) + 299*incr, max(x)];
i have two matrices
r=10,000x2
q=10,000x2
i have to find out those rows of q which are one value or both values(as it is a two column matrix) different then r and allocate them in another matrix, right now i am trying this.i cannot use isequal because i want to know those rows
which are not equal this code gives me the individual elements not the complete rows different
can anyone help please
if r(:,:)~=q(:,:)
IN= find(registeredPts(:,:)~=q(:,:))
end
You can probably do this using ismember. Is this what you want? Here you get the values from q in rows that are different from r.
q=[1,2;3,4;5,6]
r=[1,2;3,5;5,6]
x = q(sum(ismember(q,r),2) < 2,:)
x =
3 4
What this do:
ismember creates an array with 1's in the positions where q == r, and 0 in the remaining positions. sum(.., 2) takes the column sum of each of these rows. If the sum is less than 2, that row is included in the new array.
Update
If the values might differ some due to floating point arithmetic, check out ismemberf from the file exchange. I haven't tested it myself, but it looks good.