I am using MSMQ as a way to provide asynchronous SOA. Please refer to the code below as it's quite hard to explain. I am trying to figure out the best way to do it.
//another method reads off MSMQ and passes the Message into this method
public void ReadMSMQAndAction(Message m)
{
var e = m.Entity;
/* this is really bad, but i some how still need some
* kind of traffic cop to direct action */
switch typeof(m.Entity)
case Order.GetType()
switch e.Action
case "SAVE"
//todo OrderRepo Save
}
//Message gets searlized and put into MSMQ
public class Message<T>
{
public T Entity { get;set; }
/* should this be string?
* or some kind of rule i.e. "ClassName:MethodName" etc? */
public string Action { get;set; }
}
public class OrderRepo
{
public void Save(Order o) { /* todo */ }
public void Delete(Order o) { /* todo */ }
public void Update(Order o) { /* todo */ }
}
As the code gets more complex it'll be really hard to manage. Any suggestions are welcome!
Look into using delegates. They will allow you to pass the actual method call into the MSMQ so that you can then fire the delegate/action when you retrieve it from the queue.
Use WCF. Microsoft has wrapped it up so that the service (in the sense of SOA) presents as a method call, the transport being MSMQ.
The contract is necessarily one way, and the fact that the transport happens to be MSMQ is totally incidental to the service and its client (except insofar as this choice forces a one way contract).
On another note, I feel compelled to comment: until you can clearly and succinctly express the intent and implementation strategy, you do not have a clear and complete idea of what you are creating, and your chances of success are slim at best.
Software development begins with taking the vague maunderings of management and sales people and applying common sense on their behalf, with cycles of feedback, until one side loses interest, the budget runs out, or you produce what the project sponsors regard as a clear and concise rendering of what they imagine they said during that first excited arm waving.
If you cannot explain what you are doing then you don't know what you are doing. Time to stop and think until you do.
Related
We are using the Axon Framework to implement the Saga Pattern in Java. Axon uses two tables (ASSOCIATION_VALUE_ENTRY and SAGA_ENTRY) to store all the necessary information after each step of the saga. And at the end of the process (if it is correct, or, in case of error, all the compensations have been executed), it deletes the registers.
If for any reason, after an error, the compensations cannot be executed, we are able to resume the execution at the point where it failed, based on the stored information. Until here, everything is ok.
The issue came when we wanted to improve the resilience of the process and we checked what happened if the service died during the execution of a saga. According to the above, we expected the information of the execution to be persisted in the tables, but they were empty: the information only appeared when the process couldn't continue due to an error in a compensation (and no final delete action was executed).
Analyzing the source code of the Axon's JpaSagaStore class implementation, the interactions with the database (insert, update and delete) are persisted with a flush instead of a commit. The global commit is managed in the AbstractUnitOfWork class (as far as we understand). And here is where we have the doubts:
According to the literature, the flush writes in the database but the register is in a READ_UNCOMMITED state. The only way to see them in the database would be activating the READ_UNCOMMITED isolation level, with the problematic of the 'dirty reads', right? There would be any additional consideration/issue to have into account?
Does Axon have an alternative in order to ensure the persistence of the saga registers? Mainly if we couldn't activate the READ_UNCOMMITED mode (due to internal policies).
EDIT:
Summarizing it a lot, all starts with this method
public void startSaga(SagaWorkflow sagaWorkflow, Serializable sagaInput) {
StartSagaEvt startSagaEvt = StartSagaEvt.builder().sagaWorkflow(sagaWorkflow).sagaInput(sagaInput).build();
eventBus.publish(GenericEventMessage.asEventMessage(startSagaEvt));
}
Where:
eventBus is the Axon's internal one
sagaInput is simply a Serializable with some input values
SagaWorkflow is a Serializable that models the whole saga flow, whose main attribute is a LinkedList of nodes (the different steps of the saga, each one can have a different logic)
StartSagaEvt is just the POJO that models the event sent to the bus
After this, Axon performs all its 'magic' and finally arrives to the internal code:
AnnotatedSagaRepository.doCreateInstance --> AnnotatedSagaRepository.storeSaga --> [...] --> JpaSagaStore.insertSaga
public void insertSaga(Class<?> sagaType, String sagaIdentifier, Object saga, Set<AssociationValue> associationValues) {
EntityManager entityManager = entityManagerProvider.getEntityManager();
AbstractSagaEntry<?> entry = createSagaEntry(saga, sagaIdentifier, serializer);
entityManager.persist(entry);
for (AssociationValue associationValue : associationValues) {
storeAssociationValue(entityManager, sagaType, sagaIdentifier, associationValue);
}
if (logger.isDebugEnabled()) {
logger.debug("Storing saga id {} as {}", sagaIdentifier, serializedSagaAsString(entry));
}
if (useExplicitFlush) {
entityManager.flush();
}
}
The same applies for the update and delete phases. As far as I know, all the handle of the commit/rollback is performed in the class AbstractUnitOfWork, that intervenes just at the end of the complete saga flow.
This leads me to the following considerations/questions:
what sense has to keep the transaction open during the whole process instead of committing after each step? If for any reason the process fails, goes down, the database is not accessible,... all the saved information is lost.
There must be a design reason for this behavior, but I'm not able to see it. Or maybe there is a configuration to change it (hopefully, although I doubt it).
Thanks in advance for any comment!
EDIT 2
Effectively, we are using it as a kind of state machine, where the saga flow is a sequence of steps, each one with an action and a compensation, and we jump from one to another until reach an "END" status.
#Saga
class GenericSaga {
private EventBus eventBus;
private CustomCommandGateway commandGateway;
[...]
#StartSaga
#SagaEventHandler(associationProperty = "sagaId")
public void startStep(StartSagaEvt startSagaEvt) {
// Initializes de GenericSaga and associate several properties with SagaLifecycle.associateWith(key, value);
[...]
// Transit to the next (first) step
eventBus.publish(GenericEventMessage.asEventMessage(new StepSagaEvt(startSagaEvt)));
}
#SagaEventHandler(associationProperty = "sagaId")
public void nextStep(StepSagaEvt stepSagaEvt) {
// Identifies what is the next step in the defined flow, considering if it should be executed sequentially or concurrently, or if it is the end of the flow and then call the SagaLifecycle.end()
[...]
// Also checks if it has to execute the compensation logic of the step
[...]
// Execute
Serializable actionOutput = commandGateway.sendAndWaitEx(stepAction.getActionInput());
}
#SagaEventHandler(associationProperty = "sagaId")
public void resumeSaga(ResumeSagaEvt resumeSagaEvt) {
// Recover information from the execution that we want to resume
[...]
// Transit to the next step
eventBus.publish(GenericEventMessage.asEventMessage(new StepSagaEvt(resumeSagaEvt)));
}
}
As you can see, we don't have an endSaga annotation, and maybe that's the problem. But in our current situation we have kicked forward, and be have defined our custom implementation of the JpaSagaStore, in order to force a local transaction in the insertSaga and updateSaga methods.
Based on my understanding, I think you are somehow misusing the Saga component from Axon Framework. I assume from your question that you are trying to build a form of a 'state machine' using your own SagaWorkflow object. If that is the case, I have to say this is not how Axon intends the usage of Sagas.
To add to that, let me give you a pseudo-sample of what a Saga should look like.
#Saga
class SagaWorkflow {
private transient CommandGateway commandGateway;
#StartSaga
#SagaEventHandler(associationProperty = "yourProperty")
public void on(SagaInputEvent event) {
// validate, associate with another property and fire a command
SagaLifecycle.associateWith("associationPropertyKey", "associationPropertyValue");
commandGateway.send(new GivenCommand());
}
#SagaEventHandler(associationProperty = "associationPropertyValue")
public void on(AnotherEvent event) {
// validate and fire a command or finish the saga
SagaLifecycle.end();
}
#EndSaga
#SagaEventHandler(associationProperty = "anyProperty")
public void on(FinishSagaEvent event) {
// check if you need to fire extra commands to tell others it's finished or just do it silently
}
}
#Saga Annotation will make sure Axon Framework handles the whole Saga process for you, storing (serializing) it to the database when each (Saga)EventHandler is executed
#SagaEventHandler will make sure the 'Event Handling method' reacts to a given Event, only if it contains the associationProperty as part of the Event (to understand it better, I will share our docs link)
#EndSaga will tell Axon Framework to finalize the Saga after the execution of the method (finalizing means deleting it from the database)
SagaLifecycle provides several 'utilities' methods to interact with the Saga's lifecycle and associations
In the example, I made the CommandGateway transient because the Saga is serialized and stored on the database. You would not Axon to serializer any external component, like the gateway, as well
Of course, there is more to it.
You can check Axon's docs for that. But I hope this gives you enough material and ideas to use Sagas within Axon Framework better!
KR
All the examples showcasing the CQRS pattern always have 0 or 1 parameter.
For example:
public class MyCommand
{
public int Value { get; set; }
}
public class MyCommandHandler
{
public void Handle(MyCommand myCommand)
{ ... }
}
Assuming we are calling the handle directly is there is any reason besides the implementation details?
I'm aware of the advantages of having a single parameter, like encapsulating all the required data to perform the action and also making it easier to serialize if we have to work with Queues of Q/C, validation, etc..
But is it "wrong" to have multiple parameters in the handler?
But is it "wrong" to have multiple parameters in the handler?
No; it's tradeoffs.
When we have handlers with incompatible signatures, then composing handlers -- for instance, creating a handler with some cross cutting concerns -- takes more work because of the number of variations required.
No, it is not, I would say that it is sometimes advisable to use multiple parameters to separate concerns. Because you might have traceID, correlationID, or other types of technical data that you don't want to combine with business data. When you send a request, you are using headers, so when sending a message for handling, headers can be used as well
public class MyCommandHandler
{
public void Handle(MyCommand myCommand, MyHeader $header, MySecondHeader $secondHeader)
}
Also, if you don't want to inject dependencies in constructor for whatever reason, it is ok to inject them as parameters.
I am in the process of trying to gain a clear understanding of what a callback is. I came across this post: what-is-a-callback-function. The user 8bitjunkie who answered the question mentioned callbacks are named such because of how they are used in pointer languages. My initial assumption based on the name led me to think that a pointer language is a language where pointers can be directly manipulated. So I would like to know if c++ is a pointer language, and if my initial assumption was incorrect; what a pointer language is. As far as I can tell it does not seem to be a typical language agnostic term. If it is, it is covered by results relating to the usage of pointers.
Callbacks are not unique to languages that allow direct manipulation of pointers - but that is what a "Pointer Language" is. I will focus my answer on what callbacks are because that seems to be your main confusion.
Callbacks are available in Java, Python, JavaScript, and many other languages that hide pointers from you.
A callback is just a function that will be executed at the end of another function. Generally this is useful for asynchronous tasks, because it allows you to respond to the task in a specific way without blocking.
For an example I will use Java - a language with managed memory no direct access to pointers. The more native way to implement callbacks is with function pointers, and I think that is what your article meant about "Pointer Languages." But I'd rather show you what a callback is and how to use them without pointers in one fell swoop, so Java it is.
In this example we will have an interface defined like this.
public interface CallBack {
public void onFinished(boolean success);
}
This callback interface allows us to declare an object with a predefined method that will respond to either success or failure. We can then define a Runnable class like this.
public class CBObject implements Runnable {
private CallBack myCallback;
public CBObject(CallBack myCallback) {
this.myCallback = myCallback;
}
public void run() {
boolean success = false;
// do some stuff, set success = true if it works
myCallback.onFinished(success); // this calls the callback
}
}
Then if we want to use this callback we will do something like this.
public void doSomethingAsynchronous(CallBack callback) {
CBObject cb = new CBObject(callback);
Thread task = new Thread(cb);
task.start();
}
This will run this task asynchronously but allow the user to react to its success or failure.
I hope this helps!
I'm using GWTP, adding a Contract layer to abstract the knowledge between Presenter and View, and I'm pretty satisfied of the result with GWTP.
I'm testing my presenters with Mockito.
But as time passed, I found it was hard to maintain a clean presenter with its tests.
There are some refactoring stuff I did to improve that, but I was still not satisfied.
I found the following to be the heart of the matter :
My presenters need often asynchronous call, or generally call to objects method with a callback to continue my presenter flow (they are usually nested).
For example :
this.populationManager.populate(new PopulationCallback()
{
public void onPopulate()
{
doSomeStufWithTheView(populationManager.get());
}
});
In my tests, I ended to verify the population() call of the mocked PopulationManager object. Then to create another test on the doSomeStufWithTheView() method.
But I discovered rather quickly that it was bad design : any change or refactoring ended to broke a lot of my tests, and forced me to create from start others, even though the presenter functionality did not change !
Plus I didn't test if the callback was effectively what I wanted.
So I tried to use mockito doAnswer method to do not break my presenter testing flow :
doAnswer(new Answer(){
public Object answer(InvocationOnMock invocation) throws Throwable
{
Object[] args = invocation.getArguments();
((PopulationCallback)args[0]).onPopulate();
return null;
}
}).when(this.populationManager).populate(any(PopulationCallback.class));
I factored the code for it to be less verbose (and internally less dependant to the arg position) :
doAnswer(new PopulationCallbackAnswer())
.when(this.populationManager).populate(any(PopulationCallback.class));
So while mocking the populationManager, I could still test the flow of my presenter, basically like that :
#Test
public void testSomeStuffAppends()
{
// Given
doAnswer(new PopulationCallbackAnswer())
.when(this.populationManager).populate(any(PopulationCallback.class));
// When
this.myPresenter.onReset();
// Then
verify(populationManager).populate(any(PopulationCallback.class)); // That was before
verify(this.myView).displaySomething(); // Now I can do that.
}
I am wondering if it is a good use of the doAnswer method, or if it is a code smell, and a better design can be used ?
Usually, my presenters tend to just use others object (like some Mediator Pattern) and interact with the view. I have some presenter with several hundred (~400) lines of code.
Again, is it a proof of bad design, or is it normal for a presenter to be verbose (because its using others objects) ?
Does anyone heard of some project which uses GWTP and tests its presenter cleanly ?
I hope I explained in a comprehensive way.
Thank you in advance.
PS : I'm pretty new to Stack Overflow, plus my English is still lacking, if my question needs something to be improved, please tell me.
You could use ArgumentCaptor:
Check out this blog post fore more details.
If I understood correctly you are asking about design/architecture.
This is shouldn't be counted as answer, it's just my thoughts.
If I have followed code:
public void loadEmoticonPacks() {
executor.execute(new Runnable() {
public void run() {
pack = loadFromServer();
savePackForUsageAfter();
}
});
}
I usually don't count on executor and just check that methods does concrete job by loading and saving. So the executor here is just instrument to prevent long operations in the UI thread.
If I have something like:
accountManager.setListener(this);
....
public void onAccountEvent(AccountEvent event) {
....
}
I will check first that we subscribed for events (and unsubscribed on some destroying) as well I would check that onAccountEvent does expected scenarios.
UPD1. Probably, in example 1, better would be extract method loadFromServerAndSave and check that it's not executed on UI thread as well check that it does everything as expected.
UPD2. It's better to use framework like Guava Bus for events processing.
We are using this doAnswer pattern in our presenter tests as well and usually it works just fine. One caveat though: If you test it like this you are effectively removing the asynchronous nature of the call, that is the callback is executed immediately after the server call is initiated.
This can lead to undiscovered race conditions. To check for those, you could make this a two-step process: when calling the server,the answer method only saves the callback. Then, when it is appropriate in your test, you call sometinh like flush() or onSuccess() on your answer (I would suggest making a utility class for this that can be reused in other circumstances), so that you can control when the callback for the result is really called.
Sorry to ask sich a generic question, but I've been studying these and, outside of say the head programming conveying what member MUST be in a class, I just don't see any benefits.
There are two (basic) parts to object oriented programming that give newcomers trouble; the first is inheritance and the second is composition. These are the toughest to 'get'; and once you understand those everything else is just that much easier.
What you're referring to is composition - e.g., what does a class do? If you go the inheritance route, it derives from an abstract class (say Dog IS A Animal) . If you use composition, then you are instituting a contract (A Car HAS A Driver/Loan/Insurance). Anyone that implements your interface must implement the methods of that interface.
This allows for loose coupling; and doesn't tie you down into the inheritance model where it doesn't fit.
Where inheritance fits, use it; but if the relationship between two classes is contractual in nature, or HAS-A vs. IS-A, then use an interface to model that part.
Why Use Interfaces?
For a practical example, let's jump into a business application. If you have a repository; you'll want to make the layer above your repository those of interfaces. That way if you have to change anything in the way the respository works, you won't affect anything since they all obey the same contracts.
Here's our repository:
public interface IUserRepository
{
public void Save();
public void Delete(int id);
public bool Create(User user);
public User GetUserById(int id);
}
Now, I can implement that Repository in a class:
public class UserRepository : IRepository
{
public void Save()
{
//Implement
}
public void Delete(int id)
{
//Implement
}
public bool Create(User user)
{
//Implement
}
public User GetUserById(int id)
{
//Implement
}
}
This separates the Interface from what is calling it. I could change this Class from Linq-To-SQL to inline SQL or Stored procedures, and as long as I implemented the IUserRepository interface, no one would be the wiser; and best of all, there are no classes that derive from my class that could potentially be pissed about my change.
Inheritance and Composition: Best Friends
Inheritance and Composition are meant to tackle different problems. Use each where it fits, and there are entire subsets of problems where you use both.
I was going to leave George to point out that you can now consume the interface rather than the concrete class. It seems like everyone here understands what interfaces are and how to define them, but most have failed to explain the key point of them in a way a student will easily grasp - and something that most courses fail to point out instead leaving you to either grasp at straws or figure it out for yourself so I'll attempt to spell it out in a way that doesn't require either. So hopefully you won't be left thinking "so what, it still seems like a waste of time/effort/code."
public interface ICar
{
public bool EngineIsRunning{ get; }
public void StartEngine();
public void StopEngine();
public int NumberOfWheels{ get; }
public void Drive(string direction);
}
public class SportsCar : ICar
{
public SportsCar
{
Console.WriteLine("New sports car ready for action!");
}
public bool EngineIsRunning{ get; protected set; }
public void StartEngine()
{
if(!EngineIsRunning)
{
EngineIsRunning = true;
Console.WriteLine("Engine is started.");
}
else
Console.WriteLine("Engine is already running.");
}
public void StopEngine()
{
if(EngineIsRunning)
{
EngineIsRunning = false;
Console.WriteLine("Engine is stopped.");
}
else
Console.WriteLine("Engine is already stopped.");
}
public int NumberOfWheels
{
get
{
return 4;
}
}
public void Drive(string direction)
{
if (EngineIsRunning)
Console.WriteLine("Driving {0}", direction);
else
Console.WriteLine("You can only drive when the engine is running.");
}
}
public class CarFactory
{
public ICar BuildCar(string car)
{
switch case(car)
case "SportsCar" :
return Activator.CreateInstance("SportsCar");
default :
/* Return some other concrete class that implements ICar */
}
}
public class Program
{
/* Your car type would be defined in your app.config or some other
* mechanism that is application agnostic - perhaps by implicit
* reference of an existing DLL or something else. My point is that
* while I've hard coded the CarType as "SportsCar" in this example,
* in a real world application, the CarType would not be known at
* design time - only at runtime. */
string CarType = "SportsCar";
/* Now we tell the CarFactory to build us a car of whatever type we
* found from our outside configuration */
ICar car = CarFactory.BuildCar(CarType);
/* And without knowing what type of car it was, we work to the
* interface. The CarFactory could have returned any type of car,
* our application doesn't care. We know that any class returned
* from the CarFactory has the StartEngine(), StopEngine() and Drive()
* methods as well as the NumberOfWheels and EngineIsRunning
* properties. */
if (car != null)
{
car.StartEngine();
Console.WriteLine("Engine is running: {0}", car.EngineIsRunning);
if (car.EngineIsRunning)
{
car.Drive("Forward");
car.StopEngine();
}
}
}
As you can see, we could define any type of car, and as long as that car implements the interface ICar, it will have the predefined properties and methods that we can call from our main application. We don't need to know what type of car is - or even the type of class that was returned from the CarFactory.BuildCar() method. It could return an instance of type "DragRacer" for all we care, all we need to know is that DragRacer implements ICar and we can carry on life as normal.
In a real world application, imagine instead IDataStore where our concrete data store classes provide access to a data store on disk, or on the network, some database, thumb drive, we don't care what - all we would care is that the concrete class that is returned from our class factory implements the interface IDataStore and we can call the methods and properties without needing to know about the underlying architecture of the class.
Another real world implication (for .NET at least) is that if the person who coded the sports car class makes changes to the library that contains the sports car implementation and recompiles, and you've made a hard reference to their library you will need to recompile - whereas if you've coded your application against ICar, you can just replace the DLL with their new version and you can carry on as normal.
So that a given class can inherit from multiple sources, while still only inheriting from a single parent class.
Some programming languages (C++ is the classic example) allow a class to inherit from multiple classes; in this case, interfaces aren't needed (and, generally speaking, don't exist.)
However, when you end up in a language like Java or C# where multiple-inheritance isn't allowed, you need a different mechanism to allow a class to inherit from multiple sources - that is, to represent more than one "is-a" relationships. Enter Interfaces.
So, it lets you define, quite literally, interfaces - a class implementing a given interface will implement a given set of methods, without having to specify anything about how those methods are actually written.
Maybe this resource is helpful: When to Use Interfaces
It allows you to separate the implementation from the definition.
For instance I can define one interface that one section of my code is coded against - as far as it is concerned it is calling members on the interface. Then I can swap implementations in and out as I wish - if I want to create a fake version of the database access component then I can.
Interfaces are the basic building blocks of software components
In Java, interfaces allow you to refer any class that implements the interface. This is similar to subclassing however there are times when you want to refer to classes from completely different hierarchies as if they are the same type.
Speaking from a Java standpoint, you can create an interface, telling any classes that implement said interface, that "you MUST implement these methods" but you don't introduce another class into the hierarchy.
This is desireable because you may want to guarantee that certain mechanisms exist when you want objects of different bases to have the same code semantics (ie same methods that are coded as appropriate in each class) for some purpose, but you don't want to create an abstract class, which would limit you in that now you can't inherit another class.
just a thought... i only tinker with Java. I'm no expert.
Please see my thoughts below. 2 different devices need to receive messages from our computer. one resides across the internet and uses http as a transport protocol. the other sits 10 feet away, connect via USB.
Note, this syntax is pseudo-code.
interface writeable
{
void open();
void write();
void close();
}
class A : HTTP_CONNECTION implements writeable
{
//here, opening means opening an HTTP connection.
//maybe writing means to assemble our message for a specific protocol on top of
//HTTP
//maybe closing means to terminate the connection
}
class B : USB_DEVICE implements writeable
{
//open means open a serial connection
//write means write the same message as above, for a different protocol and device
//close means to release USB object gracefully.
}
Interfaces create a layer insulation between a consumer and a supplier. This layer of insulation can be used for different things. But overall, if used correctly they reduce the dependency density (and the resulting complexity) in the application.
I wish to support Electron's answer as the most valid answer.
Object oriented programming facilitates the declaration of contracts.
A class declaration is the contract. The contract is a commitment from the class to provide features according to types/signatures that have been declared by the class. In the common oo languages, each class has a public and a protected contract.
Obviously, we all know that an interface is an empty unfulfilled class template that can be allowed to masquerade as a class. But why have empty unfulfilled class contracts?
An implemented class has all of its contracts spontaneously fulfilled.
An abstract class is a partially fulfilled contract.
A class spontaneously projects a personality thro its implemented features saying it is qualified for a certain job description. However, it also could project more than one personality to qualify itself for more than one job description.
But why should a class Motorcar not present its complete personality honestly rather than hide behind the curtains of multiple-personalities? That is because, a class Bicycle, Boat or Skateboard that wishes to present itself as much as a mode of Transport does not wish to implement all the complexities and constraints of a Motorcar. A boat needs to be capable of water travel which a Motorcar needs not. Then why not give a Motorcar all the features of a Boat too - of course, the response to such a proposal would be - are you kiddin?
Sometimes, we just wish to declare an unfulfilled contract without bothering with the implementation. A totally unfulfilled abstract class is simply an interface. Perhaps, an interface is akin to the blank legal forms you could buy from a stationary shop.
Therefore, in an environment that allows multiple inheritances, interfaces/totally-abstract-classes are useful when we just wish to declare unfulfilled contracts that someone else could fulfill.
In an environment that disallows multiple inheritances, having interfaces is the only way to allow an implementing class to project multiple personalities.
Consider
interface Transportation
{
takePassengers();
gotoDestination(Destination d);
}
class Motorcar implements Transportation
{
cleanWindshiedl();
getOilChange();
doMillionsOtherThings();
...
takePassengers();
gotoDestination(Destination d);
}
class Kayak implements Transportation
{
paddle();
getCarriedAcrossRapids();
...
takePassengers();
gotoDestination(Destination d);
}
An activity requiring Transportation has to be blind to the millions alternatives of transportation. Because it just wants to call
Transportation.takePassengers or
Transportation.gotoDestination
because it is requesting for transportation however it is fulfilled. This is modular thinking and programming, because we don't want to restrict ourselves to a Motorcar or Kayak for transportation. If we restricted to all the transportation we know, we would need to spend a lot of time finding out all the current transportation technologies and see if it fits into our plan of activities.
We also do not know that in the future, a new mode of transport called AntiGravityCar would be developed. And after spending so much time unnecessarily accommodating every mode of transport we possibly know, we find that our routine does not allow us to use AntiGravityCar. But with a specific contract that is blind any technology other than that it requires, not only do we not waste time considering all sorts of behaviours of various transports, but any future transport development that implements the Transport interface can simply include itself into the activity without further ado.
None of the answers yet mention the key word: substitutability. Any object which implements interface Foo may be substituted for "a thing that implements Foo" in any code that needs the latter. In many frameworks, an object must give a single answer to the question "What type of thing are you", and a single answer to "What is your type derived from"; nonetheless, it may be helpful for a type to be substitutable for many different kinds of things. Interfaces allow for that. A VolkswagonBeetleConvertible is derived from VolkswagonBeetle, and a FordMustangConvertible is derived from FordMustang. Both VolkswagonBeetleConvertible and FordMustangConvertible implement IOpenableTop, even though neither class' parent type does. Consequently, the two derived types mentioned can be substituted for "a thing which implements IOpenableTop".