C++ Winsock API how to get connecting client IP before accepting the connection? - winsock

I am using the Winsock API (not CAsyncSocket) to make a socket that listens for incoming connections.
When somebody tries to connect, how can I get their IP address BEFORE accepting the connection? I am trying to make it only accept connections from certain IP addresses.
Thanks

SO_CONDITIONAL_ACCEPT socket option. Here
Also, pretty sure it's available in XP and Server 2003, not just Vista.

Two reasons why I do not want to accept the connection in order to check the remote IP address:
1). The client would see that there is a listening socket on this port. If i decide to reject the client connection, I would not want them to know that there is a socket listening on this port.
2). This technique is not as efficient and requires more CPU, RAM, and network usage; so it is not good in case of a Denial Of Service attack.

When using ATM, the CONNECT ACK packet will come from the most recent switch, not the end client. So, you would have to call accept() on the socket, then look at the address (based on the passed addr_family), and at that point just close the socket. By the time it reaches the requester, it will probably just get a failure.
And I'm not sure how many resources you think this will take up, but accepting a connection is at a very low level, and will not really be an issue. It's pretty easy to drop them.
If you come under a DoS attack, your code CAN quit listening for a preset amount of time, so the attacker just gets failures, if you are so worried about it.
Does it really matter if the client knows there is a socket listening? Try using telnet to connect to your localhost on port 137 and see how fast the file sharing in windows drops the connection... (If you even have it enabled, and if I remembered the correct port number.. heh..)
But, at the SOCKET level, you are not going to be able to do what you want. You are talking about getting down to the TCP level, and looking at the incoming connection requests, and deal with them there.
This can be done, but you are talking about a Kernel driver to do it. I'm not sure you can do this in user-mode at all.
If you want Kernel help with this, let me know. I may be able to give you some examples, or guidance.
Just my own two cents, and IMVHO...

accept the connection, look at the IP, if it is not allowed, close the connection
Edit:
I'm assuming you're talking about TCP connection. When you listen to the port and a connection comes from a client, the API will perform the TCP 3-way handshake, and the client will know that this port is being listened to.
I am not sure if there is a way to prevent sending any packets (i.e. accepting the connection) so that you can look at the IP address first and then decide.
The only way I can think of is to do packet filtering based on the source IP at the network layer (using firewall, for example).

Related

Client port changes with each request

I am trying to establish a TCP/IP connection between a controller (client) and a program in my PC (server) using C++, I used a sniffer to see how client’s requests are being sent and I found out that each connect request from the controller is sent from a different port and known IP, it starts with random port number and increment by 1 with each request till I restart the controller or the server receives the request, I have some questions.
1- Is that a standard behaviour and what is the idea behind this knowing that the controller is a Mitsubishi controller?
2- Is there any way I can get the new port of the controller without using accept?
This is not so much the behaviour of the controller as it is the network stack running on top of the controller and may be integrated into the controller hardware (Search keyword: TCP offload).
This is expected behaviour. To prevent all sorts of nasty side effects, a simple example is late packets from a previous connection trying to sneak in as legitimate packets for a later connection, a port is not recycled for reuse for a lengthy period after the socket using the port is closed. Your port may not be available for use. A simple solution is to do exactly what OP's network stack did: sequentially assign the next port number.
Not with BSD-style sockets. accept accepts a connection with the client. If you do not accept, you don't get a socket to handle the connection and with the socket, you should not care what the port is. It's all abstracted away and hidden out of sight.
If this is a problem, consider using a connectionless protocol like UDP. You don't get automatic re-transmission when packet loss is detected and all of the other nice things TCP does for you, but there is no connection overhead.

should I be using sockets or packet capture? perl

I'm trying to spec out the foundations for a server application who's purpose will be to..
1 'receive' tcp and/or udp packets
2 interpret the contents (i.e. header values)
To add more detail, this server will receive 'sip invites' and respond with a '302 redirect'.
I have experience with Net::Pcap and perl, and know I could achieve this by looping for filtered packets, decoding and then using something like Net::SIP to respond.
However, there's a lot of bloat in both of these modules/applications I don't need. The server will be under heavy load, and if I run TCPDUMP on it's own, it loses packets in the kernel due to server load, so worry it wont be appropriate :(
Should I be able to achieve the same thing by 'listening' on a socket (using IO::Socket for example) and decoding a packet?
Unfortunatly by debugging, it's hard to tell if IO::Socket will give me the opportunity to see a raw packet? And instead it automatically decodes the message to a readable format!
tl;dr: I want to capture lots of SIP Invites, analyse the head values, and respond with a SIP 302 redirect. Is there a better way than using tcpdump (via Net::Pcap) to achieve this?
Thanks,
Moose
Is there a better way than using tcpdump (via Net::Pcap) to achieve this?
Yes. Using libpcap (that's what you meant instead of tcpdump in that question) is a bad way to implement a TCP-based service, as you will have to reimplement much of TCP yourself (libpcap gives you raw network-layer packets), and the packets your program gets will also get delivered to the Internet protocol stack on your machine, so:
if there's nothing on your machine listening on the TCP port to which the other machines are trying to connect, the connection requests will get a RST from the TCP code and think the connection attempt failed;
if there is something on your machine listening on that port, it'll probably accept the connection, and it and your program will both try to communicate with the other machine, which will probably confuse its TCP stack and cause various bad and random things to happen.
It's not much better for UDP:
if there's nothing on your machine listening on the UDP port to which the other machines are trying to connect, the connection requests will probably get an ICMP Port Unreachable message from the UDP code, which may make it think the connection attempt failed;
if there is something on your machine listening on that port, it'll probably accept the connection, and it and your program will both try to communicate with the other machine, which will probably confuse its SIP stack and cause various bad and random things to happen.
IO:Socket will probably not give you raw packets, and that's a good thing; you won't have to implement your own IP and TCP/UDP stack. If your goal is to implement a redirect server on your machine, you have no need to receive raw packets; you want to receive SIP INVITEs with all the lower-level processing done for you by your machine's IP/TCP/UDP stack.
If you already have a SIP implementation on your machine, and you want to act as a "firewall" for it, so that, for some INVITEs, you send back a 302 redirect and prevent the SIP implementation on your machine from ever seeing the INVITEs in question, you will need to use the same mechanism that your particular OS uses to implement firewalls. There is no libpcap-like wrapper for those mechanisms, as far as I know.

Lan chat design

I'm in the process of trying to write a chat application and I have a few issues
that I trying to work out. The application is basically a chat application that works on a Lan. One client acts as the
host and other clients can connect to the host and publicly chat among themselves. I want also the option of a client starting
a private chat with an already connected client. So what is the best way for this to happen. For example should the request message (which
contains the ip address of client) route through the host and then if the requested client wants to connect , then they initiate the connection
using ip of the requesting client. Should this also be on a separate port number. Does it matter if your application uses a number of ports.
Or, when ever a client connects to a host, the host should send them a list of users with there ip addresses, and then the client can
attempt a connection with the other client for a private chat.
Hope this all makes sense. Any help would be appreciated
Thanks
If you are just interested in a quick-and-dirty chat facility that only needs to work over a LAN, I'd suggest having all clients send and receive broadcast UDP packets on a single well-known port number. Then no server is necessary at all, and thus no discovery is necessary either, and things are a lot simpler.
If you really want to go the client-server route, though, you should have your server (aka host) machine accept TCP connections on a single well-known port, and then have it use select() or poll() to multiplex the incoming TCP connections and forward any data that comes in from each incoming TCP socket to all of the others sockets. Clients can connect via TCP to the server at this well-known port, but the clients will have to have some way of knowing what IP address to connect to... either from having the user type in the IP address of the server, or by some discovery mechanism (broadcast UDP packets could be used to implement that). This way is a lot more work though.
I'm all for creating my own but depending on time constraints sometimes I look for alternatives like this I used it in a company I worked at before. It's really good. But if you decide to make your own you first have to map out a logic, structure, Database and so on before you even think about code..

How do I design a peer-to-peer app that avoids using listening sockets?

I've noticed that if you want to write an application that utilizes listening sockets, you need to create port forwarding rules on your router. If I want to connect two computers without either one of the the computers messing about with router settings, is there a way that I can get the two clients to connect to each other without either of them using listening sockets? There would need to be another server somewhere else telling them to connect but is it possible?
Some clarifications, and an answer:
Routers don't care about, or handle ports, that is the role of a firewall, which do port forwarding. The router/firewall combined device most of us have at home adds to the common misunderstanding.
Can you connect two computers without ServerSocket? No. You can use UDP (a stateless, connectionless communication protocol), but the role of a ServerSocket is to "listen" for incoming connection requests, and generate a Socket from those requests, which creates a communications channel between two endpoints. A Socket has both an InputStream and an OutputStream, so it can both read at write at either end. At that point (once the connection is made), the distinction between client/server is arbitrary, since a Socket is a two-way connection object, which allows both sides to send/receive.
What about proxying? Doesn't that allow connections between two computers without a ServerSocket? Well, no, because the server that's doing the proxying still has to be using a ServerSocket. Depending on what application you're trying to implement, this might be the way to go, or or might just add overhead. Even if there were "another server somewhere else telling them to connect", somebody has to listen for a connection request, which is the job of the ServerSocket.
If connections are happening over already open ports (most publicly accessible servers have ports <1024 not blocked by firewalls, but exceptions exist), then you shouldn't need to change firewall settings to get the connection to work.
So, to reiterate, the ONLY role of a ServerSocket (as far as your question is concerned) is to listen for incoming connection requests, and from those requests, create a Socket, which is a two-way communications channel between the two end points.
To answer the question, "How do I design a peer-to-peer app that avoids using listening sockets?", you don't. In the case of something like Vuze, the software acts as both client and server simultaneously, hence the term "peer", vs. "client" or "server" alone. In Vuze every client is a server, and every server (except for the tracker) is a client.
If you need a TCP connection between the 2 computers and both of them are behind routers (and you don't want to set up port forwarding) I think the only other possibility you have is having a third server somewhere that isn't behind a firewall running a ServerSocket and accepting connections between your 2 other computers and proxying communications between the 2. You can't establish a TCP Connection between the 2 without one listening to a socket and the other connecting to it.
Q: If I want to connect two computers without either one of the the
computers messing about with router settings, is there a way that I
can get the two clients to connect to each other
Yes: have the server listen on an open port :)

What happens to not accepted connection?

Assume a listening socket on localhost:80 and a client connecting using: telnet localhost 80
The problem is that I want only to accept a limited number of concurrent clients, assume only one.
After that I simply don't accept any.
The problem that I saw using: netstat -a is that next client connection was established. Yes I don't process it, but on a system level it is there shown as ESTABLISHED, client can send data and probably cause extra overhead to the system.
The only way I see is to continue accepting clients but disconnect them.
Am I right?
The listen() function has a backlog parameter that specifies how many outstanding sockets are allowed to hang around in the operating system kernel waiting for the server to accept() them.
On my Linux system the man page for listen() says that most of the time the client will get a connection refused error - just the same as if the socket wasn't listening at all.
If you only ever want to handle one connection, that's fine, you can just do:
listen(s, 0);
while ((new_fd = accept(s)) >= 0) {
process(new_fd);
}
It would be somewhat harder if you want to handle more than one. You can't just set the backlog parameter to the number of concurrent connections, since the parameter doesn't take into account how many connections are already active.
If you stop listening on that port it should not be allowing any more incoming connections. Make sure the listener closes after accepting the first connection.
Two other options:
Use Raw Sockets (if you OS supports them). And manually handle the TCP connections. This will involve a lot of extra code and processing though.
Use UDP. They are stateless connections but then you will have to accept/reject packets based on something else. This doesn't have the overhead of a TCP connection though. Also you will not be able to use things like telnet for testing.
You should simply close the listening socket when you no longer wish to accept more connections and open it again when you do wish to accept connections. The listen backlog wont help you at all as it's simply for 'half open' connections that the TCP/IP stack has accepted but that the application program hasn't yet accepted.